
/ ARPA ORDERt No. 2223

I F1F ISI /SRt-79-14

1978
Annual Technical Report

July 1977 -September 1978

A Research Program in Cornputer Tech nology

Prepared for the

44 Defense Advanced Research Projects Agency

Cm~ --

_.j PV0

UNIVR~iY O SOUHER C1 LJFONIAINKRMAJON lENE~ IIT7TIT
467 adhrJyI~yMrn diR 7 CJft 09

Sp

COCK PIT COMPUTATION
Sponsors ONR Project leader: Danny Cohen

The purpose of this work is to help ONR identify problems with and propose
research vectors in the application of modern information processing techniques to
the information systems in the cockpit of modern aircraft. The work s focused on
the information aspects of the modern aircraft man/machine interface. The
traditional application of computer graphics to these problems is reviewed and
discussed, and new pilot-oriented applications of computer graphics are proposed.
In addition, several research directions are proposed, both in new information
presentation technology and in the application of the upcoming VLSI technology to
these problems.

COMPUTER GENERATED IMAGERY FOR FLIGHT SIMULATION
Sponsors ONR Project leader: Danny Cohen

The purpose of the work is to review the state-of-art of the Computer Image
Generation (CIG) technology in order to help the Navy assess its application to pilot
training in the mid 1980s. The review includes not only the current state of CIG
technology, but also the current trends that can be used for extrapolation of future
progress.

MICROPROGAM VERIFICATION
Sponsor: RADC Project Leader: Stephen D. Crocker

The usual role of microcode is to implement a complicated instruction set on a
simple host machine. If the intended behavior of the instruction set can be
formalized, it is reasonable to ask whether the microcode is correct with respect to
the formal specification. This project is developing a verification system for
proving the correctness of microcode. Inputs to the system include formal
descriptions of the target instruction set and the host machine, a listing of the
microcode and proof directives that guide the verification system to build up a
proof. The language for writing the formal descriptions is ISPS, a variant of Bell
and Newell's instruction set processor notation. The Air Force Fault-Tolerant
Spaceborne Computer (FTSC), the primary example being used to drive the
construction of the verification system, is a microcode machine with about 750
very wide microinstructions. The target machine has 32-bit instructions that
perform the usual complement of arithmetic and logical operations, including
floating-point arithmetic. Formalization of the floating-point operations is one of
the more challenging subtasks of this effort.

I ii

This document describes activities conducted at USC/Information Sciences Institute
under the sponsorship of the Defense Advanced Research Projects Agency's
Information Processing Techniques Office (ARPA-IPTO). The projects at ISI
supported by other sponsors are listed below. If you desire information about these
areas, please contact the project leader specified.

COMPOSITION OF MULTIPARAGRAPH TEXT
Sponsors NSF Project Leader: William C. Mann

This project is developing new methods for autonomous text composition by
machine, with the focus at the larger-than-sentence level. An experimental
system called KDS (Knowledge Delivery System) has been developed as a testbed for
methods of text composition from computer-internal knowledge representations
such as semantic nets. Recent progress with KDS includes a new expressive
paradigm that does not rely on dividing the semantic net into sentence-sized pieces;
a problem-solving text organizer that delegates part of its work to other processes;
explicit principles for ordering and grouping concepts for expression; rules for
aggregating small expressions into larger, more natural ones; and a novel text
improvement method based on a rule-competition-oriented variant of the classic
hill-climbing algorithm. The ideas in KDS have been tested on two principal
domains: description of the structure and use of a computer message system and
description of a multi-actor, multi-contingency policy on how to respond to
indications of fire in a computer center.

COMPUTER COMPREHENSION OF NATURAL LANGUAGE
Sponsor: NSF Project Leader: William C. Mann

Despite its great social significance, human communication remains a complex,
poorly understood process. Particularly obscure is comprehension, the process by
which a sequence of words affects the cognitive state of the hearer.
lHuman-computer interaction could be made easier and more effective if computers
could comprehend strings of symbols in more human-like ways. Our prior
research has created a model of human communication as a kind of goal-pursuit
activity. The model represents four principal levels of knowledge in
communication: goals being pursued, speech acts used to pursue goals, propositions
exchanged while performing speech acts, and linguistic symbols used to convey all
of these. This project, still in its early stages, will build an experimental system
called DCS (Dialogue Comprehension System), which will read and follow
transcripts of actual human dialogues. In particular, it will contain processes that
can recognize the establishment, pursuit, and satisfaction of individual goals,
including representation of state changes in the communicating individuals.

TRANSFORMATIONAL IMPLEMENTATION
Sponsors NSF Project leader: Robert Balzer

This project is investigating the facilities needed to support an alternative
programming paradigm based upon an interactive system in which the programmer
designs the optimization of a high-level formal specification and the system
implements that design by applying corresponding transformations from a catalog.
In this paradigm, the programmers responsibility would be to determine how to
optimize the formal specification, while the systam's responsibility would be toensure the validity of the reulting Implementation.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Wfhen Date 8660_________________

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
REPOT DCUMNTATON AGEBEFORE COMPLETING FORM

2GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
ISI/SR-79-4

1978 Annual- Technical Re A Research Annul=67 7e8?cl$e t
\Prgain Cputer Tchnology. ,1- A

7.~~ ~~ CUHR6)1-ONTRACT OR GRANT NUMUEROa)

L ARA & ORK NITNUMBERS
'USC/Information Sciences Institute

II. CONTROLLING OFFICE NAME AND ADDRESS

Arlington, VA 22209 ______________

14. MONITORING AGENCY NAME & ADDRESS(II dif S.1g M.f Ofice) IS. SECURITY CLASS. (of this report)

(~i~iuUnclassified
Ia. ELASSI FICATION/ DOWNGRADING

SEDLE

IS. DISTRIBUTION STATEMENT (of Chia Report)

This document is approved for public release and sale;
distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract antored in Stock 20, if different from, Report)

It- SUPPLEMENTARY NOTES

It. K~EY WORDS (Continue on revere* side it necesary and identify 6y block number)

1: abstract programuing, domain-independent interactive system, natural lan-
guage, nonprocedural language, nonprofessional computer users, problem
solving, problem specification, process information.

2: computer terminals, interactive message service, Military Message Experi-
ment, nonprofessional computerues SIGMA, terminal-based message service

20. ABSTRACT (Continue on rover@& side If necesety and identify by block number)

This report summarizes the research performed by USC/Information Sciences
Institute from July 1, 1977, to Spt pbr_.3,,19T8. The research is aimed
at applying c8mput..r sciencT-a-d t echnology to areas of high DoD/military
impact. The 131 program consists of thirteen research areas: Specification
Acquisition From Experts - study of acquiring and using program knowledge
for making informal program specifications more precise; Military Message
Experiment - development of a user-oriented message service for large-scale

D I JANRIF3 1473 EDITION OF IN SI0 6 IS OBSOLETS Unclassified
S/N 0102-014-6601

-1/e SECURITY CLASSFICATION OF TNIS PAGE (lihon Dt ~~~
2 or 7

Unclassified # -
SECURITY CLASIFICATION OF THIS PAM ta0 DJRM. 3,,

19. KEY WORDS (continued)

3: abstract data type, abstraction and representation, Alphard, Euclid, in-

teractive theorem proving, Pascal, program correctness, program verifica-

tion, rewrite rules, software specification, verification condition.

4: computer network, digital voice communication, network conferencing

packet-switched networks, secure voice transmission, signal processing,

speech processing, vocoding.

5: command and control, computer graphics, high-level graphics language,

on-line map display.
6: Ada, Autopsy, CMS-2, DOD-1, program conversion, program equivalence,

program translation, source-to-source transformation.

7: emulators, ISPS, microprogramming, MLP-900, multimicroprocessor emulation,

National Software Works, program development tools, Q04-1, QPRIM.

8: access control, computer security, encapsulation, error analysis, error-

driven evaluation, error types, evaluation methods, protection mechanisms.

9: communication protocols, cooperation between decentralized processes,

DSN modeling, packet radio network, position-location, rigidity,

sensor networks.

10: computer mail, gateways, interconnection, internetwork protocol, networks,

protocol design, protocols, protocol verification, type-of-service.

11: command and control, digital voice communication, graphic input device

for terminal, multimedia communications, portable terminal, radio-coupled

terminal.
12. ARPANET, naive computer users, TENEX, user assistance, user documentation.

13: ARPANET interface, computer network, FPS AP-120B, KA/KI, KL109OT, KL2040,

PDP-11/45, resource allocation, TENEX, timesharing, TOPS-20.

20. ABSTRACT (continued)

military requirements; Program Verification - logical proof of program

validity; Network Secure Communication - work on low-bandwidth, secure

voice transmission using an asynchronous packet-switched network; Command.and Control Graphics - development of a device-independent graphic system
and graphics-oriented command and control applications programs; Autopsy -

research program on source-to-source program translation combining

automatic techniques with an interactive system to provide the human

manager complete control over the translation process; Programming Research

Instrument - development of a major time-shared microprogramming facility

with an extension for emulation of microprocessors; Protection Analysis -

methods of assessing the viability of security mechanisms of operating

systems; Distributed Sensor Networks - developing algorithms and

communication protocols to support the operation of geographically

distributed sensors; Internetwork Concepts - effort exploring 'aspects of

protocols for the interconnection of computer communication networks,
specifically the design and prototype implementation of an internetwork

computer message system and the design of internetwork host and gateway

protocols; Packet Radio Terminal System Evaluation - work intended to

result in a demonstration level portable terminal to test and evaluate

various solutions to the issues raised by extreme portability in the packet

radio environment; User-Dedicated Resource - assistance to and

documentation for ARPANET users worldwide; and ARPANET TENEX Service -

operation of TENEX service and continuing development of advanced support
equipment.

Unclassified

SECURITY CLASIPICATION OF THIS PAOERISthm Data 3atfl

ARPA ORDER NO. 2223

ISI/SR-79-14

1978
................... :........... A n . ..F. Annual Technical Report w2,..

July 1977- September 1978

A Research Program in Computer Technology

Prepared for the

Defense Advanced Research Projects Agency

Effective date of contract: 17 May 1972

Contract expiration date: 30 September 1978

Principal Investigator and Director: Keith W. Unc pher

Deputy Director: Thomas 0. Ellis
(213) 822-1511

This research is supported by the Defense Advanced Research Projects Agency under Contract NO. DAHCIS 72 C 0308. ARPA
Order NO. 2223.

Views and conclusions continued in this report are the authors' and should not be Interpreted as representing the official opinion
or policy of DARPA, the U.S. Government or any other person or agency connected with them.

his d.ment Is approved for public release and sole; distribution is unlimited.

UNIVERSITY O6 SOUTHERN CALIFORNIA INORMA iON i(ENG2 INSTITUTE
4676 Admiralty IVy fMina dvi Rey Califoromo 90291

RESEARCH AND ADMINISTRATIVE SUPPORT

Institute Administration:
Robert Blechen

Judy Gustafson
Gina Maschmeier
Patricia Sefton
Pam Wilson

Librarian:
David Van de Streek

Publications Group:
Nancy Bryan
G. Nelson Lucas
Jim Melancon

Secretaries to Directors:

Patricia A. Craig
Arva Morgan

1I

ii

CONTENTS

Summary iv

Executive Overview v

1. Specification Acquisition From Experts I

2. Military Message Experiment 29

3. Program Verification 39

4. Network Secure Communication 47

5. Command and Control Graphics 65

6. Autopsy 71

7. Programming Research Instrument 83

8. Protection Analysis 91

9. Distributed Sensor Networks 93

10. Internetwork Concepts 115

11. Packet Radio Terminal System Evaluation 125

1 2. User-Dedicated Resource 135

13. ARPANET TENEX Service 139

IS Publications 149

S.....................

iv

SUMMARY /

This report summarizes the research performed by USC/Information Sciences
Institute from July 1, 1977, to September 30, 1978. The research<is aimed at
applying computer science and technology to areas of high DoD/military impact.

The ISI program consists of thirteen research areas:_s.pecification Acquisition
Prom Experts -- study of acquiring and using program knowledge for making
Informal program specifications more precise; Military Message Experiment--
development of an experimental user-oriented message service for potential
large-scale military use; Program Verification- logical proof of program validity;
Network Secure Communication Z_..__ywork on low-bandwidth, secure voice
transmission using an asynchronous packet-switched network; Command and
Control Graphics_- development of a device-independent graphic system and
graphics-oriented command and control applications programs; Autops1 research
program on source-to-source program translation combining automatic techniques
with an interactive system to provide the human manager complete control over
the translation process; Programming Research f stument.._levelopment of a major
time-shared microprogramming farility with an extension for emulation of
microprocessors; Protection Analysit,-_.xethods of assessing the viability of security
mechanisms of operating systems; Distributed Sensor Networks - -jdeveloping
algorithms and communication protocols to support the operation of geographically
distributed ,ens~-sInternetwork Concepts~ exploring aspects of protocols for the
interconnection of computer communication networks, specifically the design and
prototype implementation of an internetwork computer message system and the
design of internetwork host and gateway protocols. Packet Radio Terminal System
Evaluation - work intended to result in a demonstratio level portable terminal to
test and evaluate various solutions to the issues raised by extreme portability in the
packet radio environment; User-Dedicated Resource - assistance to and documentation
for ARPANET users worldwide; and ARPANET TENEX Service - operation of TENEX
service and continuing development of advanced support equipment.

J

b/

7p

EXECUTIVE OVERVIEW

The Information Sciences Institute (ISI), a research unit of the University of
Southern California, performs research in the field of computer and
communications sciences with an emphasis on systems and applications.

This document reports the progress and results of the projects at ISI supported
by ARPA-IPTO. The significance and relevance of these programs are enhanced by
the special character of ISI, which is an open, nonproprietary, university-based
research center consisting of a staff of full-time professional computer scientists
with graduate student support. ISI maintains strong active ties and direct
involvement with the military services in identifying key R&D requirements and
focusing the research areas.

The activities of ISI's major areas of research and associated support projects
are summarized briefly below. Some of the research projects reported in this
document are discrete activities in themselves; most can be seen as parts of a larger
theme. For example, Program Verification, Specification Acquisition, Autopsy, and
the Programming Research Instrument projects should be considered as individual
parts of an overall research effort in programming methodology and quality
software; the Military Message Experiment, Network Secure Communication,
Distributed Sensor Networks, Internetwork Concepts, Command and Control
Graphics, and Packet Radio Terminal are linked elements of a major investigation
into man-machine and network communications technology. ARPANET TENEX
Service and User-Dedicated Resource are projects whose major role is service to
ARPANET users. This mutual reinforcement among the various projects at ISI
contributes largely to the productivity of the Institute's research activities.

Specification Acquisition From Experts. It has been widely recognized that the
road t- Improved software development begins with better software specification.
Such specification must be formal, and many researchers are attempting to develop
better languages for specifying software. But no matter how "good" such
specification languages become, they will be difficult to use precisely because they
are formal and--like any formal structure--require great care to build. During the
last three years, the SAFE project has been exploring a different approach to
simplifying software specification. Rather than developing a "better" specification
language, we have developed a prototype system that acts as an interface between a
software specifier and the formal specification that must be created. This interface
(system) embodies our knowledge of what constitutes good formal software
specifications, and it attempts to restate the user's informal software specification In

F09

Vi

the required formalism. For the last few years we have been building a prototype
system that embodies considerable knowledge of how people describe programs and
what makes such programs vell formed. This special knowledge provides a
powerful basis for disambiguating informal program specifications. Our prototype
system has understood and correctly formalized several real-world, albeit
simplified, specifications. We believe that these examples demonstrated the basic
feasibility of our approach; they also highlighted several deficiencies, some of
which were resolved this year and reported herein. The resolution of the rest
constitutes the basis of our plans.

Military Message Experiment. In 1975 ARPA, the Navy, and CINCPAC agreed to
an operational test of an experimental message service, to be run at CINCPAC staff
headquarters, Can'p Smith, Oahu. In February 1977, ISI's SIGMA system was
selected in a competitive evaluation as the message service best suited for the
experiment. The Military Message Experiment (MME) is being conducted at
CINCPAC headquarters, Oahu, to evaluate the utility of an interactive message
service in a major military command. SIGMA is a state-of-the-art system developed
by ISI expressly to meet the functional needs of the target community and the
specialized requirements imposed by the experiment. It is a secure, on-line
interactive writer-to-reader message service for the military community. It
provides interactive assistance for formal messages from the initial draft
preparation through coordination, transmission and distribution. SIGMA is
primarily designed to handle AUTODIN messages, but it also supports internal
record and non-record traffic. In order to keep storage requirements reasonable,
messages are kept in a central data base and are shared by all users. Users are
provided personal Folders to manage their message traffic. Entries in these Folders
show an abstract of information from and are pointers to the real messages.
Selectors are boolean filters which operate on the information in the entries and
allow the user to restrict the messages he works on to one of interest. Both
messages and Folders may be annotated with comments. SIGMA backs up the local
two-dimensional editing in the MME terminal with powerful global editing
features. Text may be stored for re-use in named text objects. In addition, a
number of special operations are tailored to meet the message handling procedures
at CINCPAC, both for the distribution of incoming messages and the coordination
and release of outgoing messages. Though it is early in the experiment, SIGMA is
already having a significant impact on the style of message processing by its users.

Program Verification. The goal of program verification research at ISI is to
develop an effective program verification system for proving that computer
programs are consistent with precisely stated specifications of what the programs
are intended to do. The system is expected to replace significant parts of testing in
current software development, and will also provide important tools for developing
and Judging the success of new programming language designs, new programming

vii

methodologies, and new detailed specification techniques. The style of
specifications and the methods of program construction, especially from isolatable
prograll components, are all important influences in making verification feasible.
Already running at ISI is an initial, experimental version of an interactive program
verification system which accepts specifications of data abstractions and programs
in a formal specification language that can be dynamically extended to applicablh
domains. The system has verified numerous example programs. Important progress
has been made in the following areas: improved user environment and interface "o
the verifier, algebraic approach to data abstractions including their verification by
a natural deduction theorem prover emphasizing rewrite rules, and experiments
showing that methods and tools do apply to real, intermediate-sized, moderately
complex software components. The eventual impact will be an increase in the
quality of software.

Network Secure Coimmunication. The major objective of ARPA's Network Secure
Communication project is to develop secure, high-quality, low-bandwidth,
real-time, two-way digital voice communication over packet-switched computer
communication networks. This kind of communication is a very high priority
military goal for all levels of command and control activities. ISI's role in this
effort is to develop efficient user-oriented systems for digital voice
communications, primarily over packet-switched networks such as the ARPANET.
The ISI NSC project is working on network voice protocols, digital voice
con ferencing systems, voice-oriented network host operating systems, real-time
sipnal processing, hardware development, and future integration of voice,
graphics, and text into a powerful packet-based command, control, and
communications system. During the past year the ISI NSC project has taken a series
of measurements designed to increase our understanding of packet voice behavior
on the ARPANET, has been involved in the specification and development of new
types of network interfaces for packet voice systems, and has begun the
development of a second-generation Network Voice Protocol.

Command and Control Graphics. In cooperation with the Navy, ARPA/IPTO is
preparing a command and control testbed at Naval Ocean Systems Center to explore
and demonstrate the use of advanced computer techniques in military applications.
There is a recognized need for high-quality graphics input and output in this

4environment to accommodate effective data presentation and to support
high-quality user interaction with command and control programs and data bases.

In support of the testbed, the ISI Command and Control Graphics . project is
developing a graphics system that homogeneously supports graphics terminals of
widely varying capability, potentially interacting with one or more different

S programs running on separate computers connected via a command and control
communications network. The project is also developing advanced applications for
the testbed that fully exploit the graphics medium.

iil

Autopsy. The purpose of the Autopsy project is to build a semiautomatic
program translation system for converting programs in old programming languages
into a new programming language. The system being developed will provide a
series of tools for employment under the user's direction. One of these will be an

automatic translator, though it will probably not be able to translate every

combination of constructs in the old language, or at least not into acceptably
efficient new code. Consequently, the user will have the option to guide some
parts of the translation more carefully. A history of the translation will be

produced by the system to document the relationship between the old and the new
code. The initial focus of the project is translating CMS-2M programs into Ada,
DoD's new programming language for embedded computer systems.

Programming Research Instrument. The PRIM system is a multi-user, interactive
high-speed emulation facility for the exploration of computer architectures and
development and debugging of code for small- and medium-scale computers. It is

based on the MLP-900, which is attached to a PDP-10 running TENEX. Current

work extends the basic PRIM system in two directions. First, the system is being

rel mplemented with a QM- 1 as the emulation engine in place of the MLP-900.
When complete, the QM- 1-based system (QPRIM) will be operational at both RADC
and NOSC, where QM- l's will exist and be attached to DECSystem 20's running

TOPS-20. The other major extension is the modeling and emulation of closely
coupled sets of processors in order to support architecture studies for forthcoming
multiprocessor systems, predominantly those being designed around
microprocessors.

Protection Analysis. This project, which terminated in 1978, had as its goal the
development of effective tools and techniques for detecting operating system
protection errors (errors that allow the security of the system to be compromised).

The approach was an empirical identification and analysis of error types and a

development of effective search strategies to detect various types of errors.

Distributed Sensor Networks. The Distributed Sensor Networks project explores

the problems arising from the need to integrate the technologies of computer

communication networks, sensors and artificial intelligence. Our work consists of
three major efforts. First we have been developing a "sensor-independent" DSN
model whereby the problems of communication and artificial intelligence may be
encapsulated independently of the details of any specific sensor. Second, we have
been developing a simulation model of DSN and studying issues in real-time
high-level protocols for DSN communications. Finally, we have developed

extensive mathematical and algorithmic tools to solve the position-location

problem and have implemented algorithms to study the practical aspects of the

problem.

Ix

internetwork Concepts. The Internetwork Concepts project explores four aspects
of protocols for the interconnection of computer communication networks: (1) the
design, and in some cases prototype Implementation, of internetwork applications,
(a) the design of internetwork host and gateway protocols, (3) the formal analysis
of the host level protocol Transmission Control Protocol (TCP), and (4) general
research on communication concepts for Internetwork environments. The project
aims to provim4e for appropriate and effective designs for the primary user service
applications (i.e., Mail, Telnet, and File Transfer Protocol) in the internetwork.
environment, based on a set of host and gateway level protocols that provide the
full range of service characteristics appropriate to a wide range of applications
(e.g., speech, graphics, text), and that have been specified and analyzed to ensure
their correct operation.

Packet Radio Terminal System Evaluation. ARPA is currently developing a Packet
Radio Network (PRN) that will provide a wideband data communication capability
much like the ARPANET but with the added dimensions of mobility and dynamic
configurability. As this concept gains acceptance in the military services,
fundamental choices will need to be made about mobile PR terminals for use with
the system. This study, begun in June 1978, addresses the terminal characteristics
desirable at the user level through the lower level protocol design decisions, the
kind of interfaces required to support them, and the impact of such issues on
terminal designs and other portions of the system. The work is intended to result
in a demonstration level portable terminal to test and evaluate various solutions to
the issues raised by extreme portability in the packet radio environment.

User-Dedicated Resource. This project was begun in order to provide
encouragement and help to new ARPANET users who faced an initial barrier
because of their lack of previous on-line experience, the rapidity of system
modification, and the insufficiency of introductory documentation. New ARPANET
users are contacted as soon as their accounts are installed on the ISI machines; they
are interfaced to the available network facilities by means of three levels of
appropriate documentation. Both short-term solutions (answering questions,
solving individual problems) and long-term solutions (guiding users in solving
common problems, making available better procedures and documentation) are
routinely provided. Introductory primers and manuals have also been written
exclusively for new users.

ARPANET TENEX Service. ISI is supporting, operating, and maintaining
three TENEX and two TOPS-Z0 systems at ISI on a schedule of 161 hours per week
each, in order both to provide TENEX service to ARPA and to support its research
projects via the facilities at IS!. IS! operates two TENEX and TOPS-Z0 systems at a
computer center that is part of the command and control testbed at the Naval Ocean
Systems Center, San Diego, California. As part of the Military Message Experiment,

i' -o-

x

ISI also operates one TENEX system at Camp Smith, Oahu, on a 161 hour per week

basis. The Institute provides a 24-hour availability of TENEX systems,
maintenance, and operators, continued development/improvement support, support
of the XGP at IPTO, as well as ARPA NLS user support and minimal NLS software
support. Through this support we have achieved increased long-term up-time,
faster repair and improved preventive maintenance, and economy of scale in
operation.

f1

[,I

1. SPECIFICATION ACQUISITION FROM EXPERTS

Rese'arch Staff: Research Assistani Support Stafft
Robert Balzer Chuck Williams Joan C. Nosanov
Neil Goldman Mark James
Lee Erman

INTRODUCTION

It has been widely recognized that the road to improved software
development begins with better software specification. Such specification must be
formal, and many researchers are attempting to develop better languages for
specifying software. But no matter how "good" such specification languages
become, they will be difficult to use precisely because they are formal and--like
any formal structure- -require great care to build.

During the last three years, the SAFE project has been exploring a different
approach .to simplifying software specification. Rather than developing a "better"
specification language, we have developed a prototype system that acts as an
interface between a software specifier and the formal specification that must be
created. This interface (system) embodies our knowledge of what constitutes good
formal software specifications, and it attempts to restate the user's informal
software specification in the required formalism.

We recognize that this is a radical approach to the problem, but we believe it
is essential to recognize that formal mechanisms are foreign to man's nature. We
can be taught--with considerable pain, difficulty, and expense--to use them, but

we always revert to informal structures wherever possible. Even mathematical
proofs are only partially formalized arguments that a given line of reasoning is
correct.

Formal software specifications must be produced, but that does not imply that
people should create them. Rather, people should continue to write informal
specifications (such as existing B-5 military software specifications) and use a
computer-based tool to produce the formal software specifications. Such a division
of effort between man and machine seems much more appropriate, with the
computer system responsible for reformulating the user's informal specification in
the particular form required, thus maintaining consistency, avoiding ambiguity,

and ensuring completeness.

SPECIFICATION ACQUISITION

This is basically the standard language translation task; it is not difficult if
the difference between the input and output languages is small and the input is
understood. To eliminate the first of these problems we have specifically designed
our formal specification language to minimize the differences between it and the
informal input. Thus the key issue is understanding the input.

This difficulty in understanding the input specification has limited previous
efforts to the use of formal specification languages while precluding informal
specification--a limitation that shifted the understanding burden completely to the
human specifier. We believe this extreme position is unwarranted and imposes an
artificial barrier between computers and potential users. In a suitably constrained
environment, much of the understanding of an informal input can be handled by a
computer system which then undertakes the responsibility of re-expressing it in
the required formalism.

How can such understanding be automated? First, we must define the nature
of informal languages. The primary distinction between formal and informal
language is that in the latter information is suppressed, yielding partial
descriptions and constructs rather than complete ones. These partial descriptions
and constructs result in ambiguity that can be resolved only by context.

But what information is suppressed? It is far from random. The originator of
the informal communication suppresses information that he believes the recipient
can correctly fill in and may temporarily suppress details not central to the main
topic being communicated. Thus informal languages are effective because they
allow both the originator and the recipient to focus on the relevant issues and to
suppress details that can be correctly inferred and that, if present, would detract
from or blur the issues being highlighted.

Therefore, to automate the understanding of informal languages one must
disambiguate partial descriptions and constructs by supplying the information
suppressed because the originator felt it to be obvious from the context.
Unfortunately, providing such disambiguation has been remarkably difficult
because of the large variability in how context affects the disambiguation and the
undetermined amount of unstated world knowledge that might bear upon the
resolution.

On the other hand, considerable success can be gained by automating
disambiguation in a highly constrained domain. Fortunately, programs are very
highly constrained objects (one reason they are so hard to construct), and people
seem to describe them in rather limited ways.

SPECIFICATION ACQUISITION a

For the last few years we have been building a prototype system that
embodies considerable knowledge of how people describe programs and what
makes such programs well formed. This special Knowledge provides a powerful
basis for disambiguating informal program specifications. Our prototype system
has understood and correctly formalized several real-world, albeit simplified,
specifications. We believe that these examples demonstrated the basic feasibility
of our approach: they also highlighted several deficiencies, some of which were
resolved this year and reported herein. The resolution of the rest constitutes the
basis of our plans.

ACCOMPLISHMENTS AND CURRENT STATUS

Over the last several years, we have developed the basic technology for
computer comprehension of informal program specifications and for their
translation into a precise operational formalism. This accomplishment has been
demonstrated by applying the system to several simplified military systems whose
informal specifications were extracted from existing MIL-SPEC 490-B5 Software
Specification Manuals (see Appendix I).

This technology is based upon an extensive set of rules defining the allowable
dynamic behavior of well-formed processes used to disambiguate the possible
interpretations of constructs in the informal specification. Only those
interpretations that lead to well-formed behavior are accepted (see Appendix II for
a technical description of the SAFE system). Our experience to date indicates that
these general rules (augmented with task-specific rules, that normally accompany
the informal specification) provide sufficient disambiguation power with only
minor user interaction.

LIMITATIONS

Naturally, these first results have been achieved in a highly restricted
context. First, only small (approximately 10- to 15-sentence) specifications have
been handled. These are far from practical military size, and our project faces a
major task of scaling the current system to handle practical-sized specifications
(this task is the central thrust of our FY79 and FY80 plans).

Second, only a subset of the necessary software constructs are understood by
the existing system; for example, parallel processing, interrupts, systems with
memory, and exception handling are omitted. Basically, the current system is
limited to single-process systems operating in a static environment (one changed
only by the program itself) without permanent memory (the environment is reset

SPECIFICATION ACQUISITION 4

between successive sets of inputs so that the processing of one does not affect any

of the others). This is an important subset of systems and is clearly the simplest
place to start.

Third, the very nature of informal languages means that there is no single
way to specify a system; instead, a very broad range of alternatives must be
accepted. The original system was quite limited in this regard, and increasing the
system's robustness was the main thrust of this year's activity (described below).

Fourth, informal specification techniques are important for the entire range
of military software systems. A separate informal-to-formal translation cannot be
built for each system, or even for each application area; instead, a common system
must be reused. Thus our system has been built to be independent of any particular
application. So far, we have been quite successful in this regard by segregating the
knowledge specific to an application into data tables used by the system. However,
creating these data tables is Itself quite laborious and error-prones a major effort is
required to apply the existing system to a new application.

Finally, a usable version of our system requires a user interface that accepts
the informal specification, interacts with the user to solicit information to
complete, correct, and/or disambiguate the specification, and explain the formal
specification derived. We would like to use natural language for this interface,
but neither our system nor the technology of natural language parsing is
sufficiently mature at this point. Additionally, there are many others more
qualified than ourselves to pursue the problem of natural language parsing.
Therefore, we have chosen to avoid this issue for the time being by manually
preparing the informal specification (accomplished by enclosing each noun phrase
and verb phrase in parentheses). This enables us to concentrate our effort on the
semantic issues of comprehending informal languages.

Both our current and proposed plans are focused on gradually removing these
restrictions.

CURRENT ACTIVITY AND PROGRESS (FY78)

Our major activity this year was to extend the system's robustness to
variability in the informal specifications. Specifically, we have created 25
perturbations of the examples already handled by the system. Each is a quite
reasonable variation of the original specification, but each has been chosen so that
the current system (as of the beginning of FY78) would not handle it. Thus each
perturbation forced us to extend the systems capacity to handle input variability.

SPECIFICATION ACQUISITION 5

The following examples illustrate the types of perturbations chosen and the
extensions of the system required to handle these perturbations (the original
specifications are presented in Appendix I).

I. In the message processing example (see Fig. 1.1 of Appendix I) change sentence 7
to read "perform the action associated with the key" instead of "perform the action
associated with the type of key".

Effecth The domain model is changed so that actions are associated with
keys rather than with the type of the key. This causes the later statement
of the association between a particular action (named action-O by the
system) and type-O keys to be interpreted as an inference rule which says
that if a key has the property of being a type-O key, then its associated
action is action-O.

Original processing: Because explicit links existed between the key types
and specific actions, the "perform" statement was translated into a case
statement for the analysis of this specification so that it could be
determined that assignments could occur during these actions and hence
that the searching which initiates these actions is part of the assignment
process.

Difficulty: The explicit associations between actions and keys has become
implicit (represented as an inference rule). Thus a set of alternatives is
not explicitly available to gather together into a case statement. Notice
that this difficulty is simply the change from explicit to implicit data and
has nothing to do with the domain model shift from associations between
actions and key types to keys themselves. This shift is adequately handled
by a general "association" mechanism and would have been successfully
handled by our unaugmented (FY78) system. The difficulty was caused
by. the introduction of implicit data necessary for determining the control
structure of the specification.

System extension: An ability to reason about the set of data derivable from an
inference rule, similar to the capability existing within the
Meta-evaluation phase, was added to the Planning phase.

2. In the Link Scheduling example (see Fig. 1.4 of Appendix I), in sentence 2, remove
the predicate limiting the computation of a relatie transmission time for a
subscriber to only those situations in which a subscribtr entry was found in the
SOL.

SPECIFICATION ACQUISITION B

Effet: A control structure for the specification will be formulated in
which the computation of the relative transmission time for a subscriber
is performed in inappropriate situations (when no entry for that
subscriber exists within the SOL).

Difficulty, This control structure causes an uncorrectable (via normal
backtracking mechanism) error because the data required for the
computation is not guaranteed to be available.

System extensions: Certain unanticipated "control flow" type errors are part
of the informal nature of the specification and can be handled with the
addition of specialized "fixer" experts. This is the first instance of
handling unanticipated informal constructs. Previously the informal
nature of a construct was recognized upon entry and an explicit decision
mechanism was employed to investigate the alternatives. Here the lack of
well-formedness of the specification leads to the identification of the
cause (or possible causes) of the problem that are resolved by special
purpose mechanisms.

3. In the Narrative Message Analysis example (see Fig. 1.7 in Appendix I) change
amessages uith an addressee matching a COL entry" in sentence 7 to "message
matching a CGL entry".

Effect: The change causes the system to match messages, rather than
addressees within the messages, against COL entries (which are also
addressees).

Difficulty: Such matches are inappropriate because a message could never
match an addressee, but the system was unaware of this ill-formed
structure.

System extension: The semantics of "compare" was strengthened so that it
was known that type compatibility was a necessary (but not sufficient)
condition for a match to occur, and the system was extended to useinecessary and/or sufficient conditions in its determination of
well-formedness. With this extension, the system was able to determine
that the arguments to the comparison (which the system added to produce
matches) must be type-compatible with each other so that a match is, in
fact, a possible result. As in the previous example perturbation, this
causes the system to dynamically recognize that the match specification
was informal and that it be well-formed, the arguments must be
type-compatible. The existing general association mechanism was capable

of satisfying this requirement when invoked by a specialized "fixer"

SPECIFICATION ACQUISITION 7

expert. The situation is one in which a type coercion is needed, but the
appropriate target type is a function not only of the relation and operand,
but of another operand as well.

PLANS

The major effort for FY79 is to scale the SAFE system so that it can handle real
unsimplifted spncifications of practical size. A specific example, the ARPANET
Host-IMP Protocol, has been chosen because it is well-written, widely known, and
representative of an important class of applications. FY79 will be spent preparing
SAFE for specifications of this class and size (about 20 pages).

Specifically, we will start analyzing the Host-IMP Protocol specification in
detail to determine what capabilities are required to understand this class of
specifications. General knowledge about this class of system will be identified (foi
example, that a protocol is a set of rules for exchanging information between two
or more processes and that transmission errors can occur), and methods of
incorporating it into the system devised. Deficiencies in the current system and/or
the protocol specification will be identified; a plan will then be generated and
implementation begun on overcoming these difficulties.

Orthogonal to these issues specific to the class of protocol problems is a set of
issues concerned merely with handling larger specifications. These issues include
limiting the size of the knowledge base created and managing its contents;
identifying the points of search within the system and applying more powerful
heuristics to prevent combinatorial explosion; and determining how to process the
specification a part at a time, with limited interaction between the parts, rather
than considering it as an unpartitioned whole.

Also, we have particular notions about how specifications should be written,
which center on the issues of separating functionality from representation and
optimization, and of providing abstract yet process-oriented specifications. These
notions must be explicated as a set of standards for SAFE specifications. Then the
Ilost-IMP protocol must be rewritten to conform to these standards. In particular,
it is currently filled with representation issues that must be removed.

Because we measure progress and test system capabilities through particular
examples, we will generate a few simplified versions of the rewritten
specifications that allow us to consider these issues individually and work on them
as the implementation proceeds. We also plan to gain experience with a somewhat
larger specification as a prelude to scaling up our system to handle practical-sized
systems. We have chosen an example approximately three times larger (about 45

SPECIICATION ACQUISITION

sentences) than any we have previously handled. It describes a military electronics
switchboard in which an operator uses a keyboard to direct and control the
interconnection of subscripts via various types of circuits.

In FY80, we will actually begin working on the Host-IMP Protocol. The
rewritten version, created the previous year to conform to SAFE standards for
specifications, will be converted to a formal specification for the Host machine by
mid year. In the remainder of the year, we will create several perturbations of this
specification to test the system's robustness to variability of large specifications.

Furthermore, we will provide a rudimentary capability to exercise the formal
specification. This will enable a user to watch the formal specification operate on
selected data to ensure that the formal specification produced by the system
matches the user's intent. Such a capability is important because just as it is
difficult for a user to write a formal specification directly, so is it difficult for him
to directly (i.e., by inspection) understand the formal specification produced by the
system. Instead, by observing the behavior of the formal specification on
appropriate cases, the correspondence between intent and result can be ascertained.
Together with a paraphrase capability (to be added later as part of the user
interface), this sho-uld provide a quite complete capability for user understanding
of a formal specification.

Such a capability to exercise a formal specification is important for a second
reason. In addition to providing information concerning the correspondence
between the formal specification and the user's intent, it also provides an
assessment of whether the specification meets the user's requirements. Short of
producing a formal statement of these requirements (with all the attendant
difficulties of such formalization) and verifying that the formal specification is
consistent with these formal requirements, the only recourse is to make such an
assessment by appropriately testing (i.e., observing the behavior of) the
specification. Rome Air Development Center (RADC) is currently considering such
an effort (testing specifications) as an outgrowth of the SAFE project.

SPECIFICATION ACQUISITION 9

APPENDIX I

This section presents three examples successfully handled by the SAFE
prototype system. The examples were extracted from actual natural language
specification manuals, and the results illustrate the power of the system's context
mechanisms. However, our system is only a prototype and, as such, it is far from
complete. New examples currently expose new problems that are resolved by
adding new capabilities to the system. Therefore, until some measure of closure is
obtained, it should not be assumed that the prototype will correctly process new
exan.ples of the same "complexity" as earlier examples. Our goal is to add each new
capability in as general a form as possible so that when it is used in new examples
it will function correctly. In this way we expect to "grow" the system as more
complex and varied examples are tried.

For each of the examples, we present three figures: the actual parenthesized
version of the informal input currently used by the system (to avoid syntactic
parsing problems), a manually marked version, which indicates some of the
informalities to be resolved by the system, and a stylized version of the formal
output program produced by the system. These programs are expressed in (and run
on) our own language (AP2), which uses a relational data base as the repository for
all data manipulated by the programs.

The first example is a system that automatically distributes messages to
offices on the basis of a keyword search of the text of the message. Figure 1.1
gives the informal natural language description. Figure 1.2 indicates some of the
imprecisions contained in this example that must be resolved to obtain the system's
formalization of this specification as an operational program (Fig. 1.3).

To give some measure of the amount of imprecision in this example and,
therefore, the amount of aid provided by the system, we have compiled the
following statistics:

Number of missing operands = 18
Number of incomplete references = 22
Number of implicit type conversions 9
Number of terminology changes = 3
Number of refinements or elaborations = 2
Number of implicit sequencing decisions' 7

L"-

SPECIFICATION ACQUISITION 10

ACTUAL INPUT FOR MESSAGE
PROCESSING EXAMPLE

((MESSAGES ((RECEIVED) FROM (THE "AUTODIN-ASC'))) (ARE PROCESSED) FOR (AUTOMATIC
DISTRIBUTION ASSIGNMENT))

*((THE MESSAGE) (IS DISTRIBUTED) TO (EACH ((ASSIGNED)) OFFICE))

*((THE NUMBER OF (COPIES OF (A MESSAGE) ((DISTRIBUTED) TO (AN OFFICE)))) (IS) (A FUNCTION
OF (WHETHER ((THE OFFICE) (IS ASSIGNED) FOR ((ACTION") OR (INFORMATION"))))))

((THE RULES FOR ((EDITING) (MESSAGES))) (ARE) (: ((REPLACE) (ALL LINE-FEEDS) WITH
(SPACES)) ((SAVE) (ONLY (ALPHANUMERIC CHARACTERS) AND (SPACES))) ((ELIMINATE) (ALL
REDUNDANT SPACES))))

(((TO EDIT) (THE TEXT PORTION OF (THE MESSAGE))) (IS) (NECESSARY))

(THEN (THE MESSAGE) (IS SEARCHED) FOR (ALL KEYS))

*(WHEN ((A KEY) (IS LOCATED) IN (A MESSAGE)) ((PERFORM) (THE ACTION ((ASSOCIATED) WITH
(THAT TYPE OF (KEY))))))

'((THE ACTION FOR (TYPE-O KEYS)) (IS) (: (IF ((NO OFFICE) (HAS BEEN ASSIGNED) TO (THE
MESSAGE) FOR ("ACTION")) ((THE "ACTION" OFFICE FROM (THE KEY)) (IS ASSIGNED) TO (THE
MESSAGE) FOR ("ACTION"))) (IF ((THERE IS) ALREADY (AN "ACTION" OFFICE FOR (THE
MESSAGE))) ((THE PACTION" OFFICE FROM (THE KEY)) (IS TREATED) AS (AN "INFORMATION"
OFFICE))) (((LABEL OFFSI (ALL "INFORMATION" OFFICES FROM (THE KEY)) (ARE ASSIGNED) TO
(THE MESSAGE)) IF ((REF OFFSI THEY) (HAVE (NOT) (ALREADY) BEEN ASSIGNED) FOR
(("ACTION") OR (INFORMATION"))))))

*((THE ACTION FOR (TYPE-i KEYS)) (IS) (: (IF ((THE KEY) (IS) (THE FIRST TYPE-1 KEY ((FOUND)
IN (THE MESSAGE)))) THEN ((THE KEY) (IS USED) TO ((DETERMINE) (THE "ACTION" OFFICE))))
(OTHERWISE (THE KEY) (IS USED) TO ((DETERMINE) (ONLY "INFORMATION" OFFICES)))))

Figure 1.1

SPECIFICATION ACQUISITION 11

SPECIFICATION DEFICIENCIES OF
MESSAGE PROCESSING EXAMPLE

(BY CONVENTIONAL PROGRAMMING STANDARDS)

MESSAGES RECEIVED FROM THE AUTOOIN-ASC iE V SED!FO-ATMAI O11iST SSIGNMEN1V

* THE MESSAGE IS DISTRIBUTED TO EACH ASS EDFFI

* THi NUMBER OF POPIES OF A ME.GE DISTRIBUTED TO AN OFFICE IS A FUNCTION OF WHETHER THE

OFFICE IS ASSIGNED FOR ACTION OR INFORMATION.
A

* THE 44RA- FONkITINCESSAGES)ARE (1) REPLACE ALL LINE-FEEOS,11ITH SPACES (2). SAVE ONLY

ALPHANUMERIC CHARACTERS AND SPACES AND THEN (3) ELIMINATE ALL REDUNDANT SPRC

* IT IS NECESSARY TOiOIT THE TEXT PORTION OF THE MESSAGE.

* THE ESSAGE IS THEN SEARCHEO FOR ALL KEYS.

* WHEN A KEY IS LOCATED IN^A MESSAGE, PERFORMTE ACTION ASSOCIATED WITH THAT TYPE OF KEY.)

S, THE lIO FOR TYPE-S .KFYS IS: IF NO ACTION OFFICE HAS BEEN ASSIGNED TO.THE MESSAGE, THE

ACTION OFFICE TP9IHE KEY IS ASSIGNED TO THE MESSAGE FOR ACTIONAFTEEI ALREADY AN

ACTIO OFFICE FOR THE MESSAGE, THE ACTION OFFICE FROf THE KEY iFORTION

OFF IC.K LL INFORMATION OFFICES FROM THE KEY ARC JASSIGNED TO THE MESSAGE IF THEY HAVE NOT

ALREADY BEEN ASSIGNED cOR ACTION OR INFORMATIONL

* THE ACTION FOR TYPE-1 IS: IF THE KEY IS;TE FlT TYPE-1 KEY FOUND IN THE MESSAGE THEN THE

KEY ISC D TO DETERMINE "THE ACTION OFFICL OTHEVNISE THE KEY IS USED TO DETERMINE ONLYD

INFORMATION OFFICE "

Figure 1.2

SPECIFICATION ACQUISITION 12

PROGRAM CREATED BY PROTOTYPE SYSTEM

(WHENEVER (receive message FRON autodin-asc BY oate)

OO(edlt text OF message)

(search text OF message FOR (CREATE THE SET OF keys))

(dlstribute-processll message))

(dlstr ibute-processll (message)

(FOR ALL (offices assigned 10 message FOR ANYTHING)

(dlstrlbuto-procossl2 message offlce)))

(d Itelbute-process#2 (message off ice)

(DO (functionll (BOOLEAN (assigned office TO message FOR action))

(BOOLEAN (assigned office TO message FOR Information)))

TIMES (distribute A copy WHICH IS A copy OF message AND located

AT safe FROM safe TO location OF office)))

(edit (text)

(FOR ALL line-feeds IN text

(replace line-fted IN text BY (CREATE SET OF spaces)))

(keep (union (CREATE THE SET OF alphanumeric characters IN text)

(CREATE THE SET OF spaces IN text))

FROM text)

(FOR ALL spaces IN text AND redundant IN text

(remove space FROMI text)))

(WHENEVER (locate A key IN text OF message AT POSITION ANYTHING)

O0(CASE (type OF key)

(type-S (type-S-action message key))

(type-I (type-I-action message key))))

(type-S-action (message key)

(IF (NOT (EXISTS action office FOR message))
THEN (assign THE action olfic~l FOR key

TO message FOR action)

ELSE (treat action officeD2 FOR key

AS information officeU2 FOR key

IN (IF (NOT (assigned officel2 TO message

FOR action OR information))

THEN (assign off iceI2 TO message FOR Information))))

(FOR ALL (offico3 assigned TO key FOR Informatlion)

(IF (NOT (assigned olfice#3 TO message

FOR action OR Informatlon))

THEN (assign officeD#3 TO message FOR information))))

.I

SPECIFICATION ACQUISITION 13

(type-1-act ion (message key9)

(IF key a (keyll IHICH 1S (SEARCH HISTORY FOR FIRST

(locate tpe-1 kteyl IN text OF message AT position ANVY)

THEN (determine THE action office FOR message

BY (typo-S-action message keg))

ELSE (determine ONLY THE Information office FOR message

BY (IF (EXISTS action office FOR message)

THEN (treat action officell FOR key

AS Information officell FOR key

IN (IF (NOT (assigned office I1 TO message

FOR action OR information))

THEN (assign officeli TO message FOR information))))

(FOR ALL officel2 assigned TO key FOR information)

(IF (NOT (assigned officeD2 TO message

FOR action OR Information))

THEN (assign officel2 TO message

FOR Information))))))

Figure 1.3

i4

JLa

SPECIFICATION ACQUISITION 14

To illustrate how context is used to complete the partial descriptions in the
example, we consider a few cases:

1. Partial sequencing. Distribution is never explicitly invoked in the informal
specification. However, the first sentence indicates that Assignment is
performed to enable the Distribution. Hence, Distribution should be
explicitly invoked after Assignment.

2. Missing operand. Sentence 2 Indicates that the message should be
distributed to certain offices--those that are "assigned." But, as can be
determined from other usages in the informal specifications, offices can be
"assigned" to either messages or keys. This missing operand can be
resolved by remembering that Assignment was performed to enable
Distribution. Hence, Distribution must use some result of the assignment
process. Assignment, from the last two input sentences, assigns offices to
the current message. Hence, Distribution must use the offices assigned to
that message.

3. Incomplete reference. Sentence 4 says to replace all line feeds with spaces.
First, replace requires a third operand, some set in which the replacement
will occur. Context indicates that this missing operand should be the text
of the message parameter of Edit. Second, the use of a plural in the
operand of an action which expects a singular operand, indicates an
implicit loop. Hence, we have "for all line feeds, replace the line feed by a
space in the text of the message." Now, which line feeds are we concerned
with? Only those in the text of the message because they are the only ones
which can be replaced. Hence, completing the partial reference, we have

"for all line feeds in the text of the message, replace the line feed by a
space in the text of the message."

It should be noted that of the approximately 61 decisions which had to be
made for this example, all but one were resolved correctly by the prototype system.
The message it distributed is the edited one (with all punctuation removed) rather
than the original unedited one. The cause of the error is that the system does not
understand the difference between an object being changed and its participating in
relations with other objects; therefore, it has no concept of the original state of an
object and hence does not consider this as a possible completion of any partial
reference.

This capability can clearly be added to the system, but the important point is
that interpretation errors will occur, just as they do when human intermediaries
are used to produce the formal specification. It is therefore essential to provide
extensive feedback and assumption-testing facilities so that such errors, when
made, can be discovered and corrected by the user.

SPECIFICATION ACQUISITION 15

The second example is from a system for scheduling a satellite
communication channel by multiplexing it among several users (subscribers). It
specifies the component of the system which receives a schedule (SOL) from the
controller of the satellite channel and extracts from it the portion of the next
transmission cycle which has been reserved for a particular subscriber and those
portions available to any user (RATS). This information is placed in a transmission
schedule used by another component to actually utilize the channel during the
allowed periods. Figure 1.4 gives the informal natural language description.
Figure 1.5 indicates some of the imprecisions contained in this example that must
be resolved to obtain the system's formalization of the specification as an
operational program (Fig. 1.6). In addition to the process description of Fig. 1.4, we
have assumed that the formulas referenced and a structural description of the
objects of the domain have been separately specified.

The relevant portions of these specifications are that the SOL is an ordered set
of subscriber and RATS entries. Each subscriber entry has subscriber identifier and
transmission length fields, while a RATS entry has only the latter. The
transmission schedule is a set of entries, each of which is composed of an absolute
transmission time and a transmission length. One of these entries is the primary
entry of the transmission schedule. Finally, formulas I and 2 both take an SOL
entry as input and produce, respectively, a relative and an absolute transmission
time.

SPECIFICATION ACQUISITION 16

ACTUAL INPUT FOR LINK SCHEDULINO EXAMPLE

((THE SO.)
(IS SEARCHED)
FOR
(AN ENTRY FOR (THE SUBSCRIBER)))

OF ((ONE)
(IS FOUND))

((THE SUBSCRIBER'S (RELATIVE TRANSMISSION TIME))
(IS COMPUTED) ACCORDING-TO ("FORMULA-1)))

((THE SUBSCRIBER'S (CLOCK TRANSMISSION TIME))
(IS COMPUTED) ACCORDING-TO ("FORMULA-2")))

WHEN ((TIi (TRANSMISSION TIME))
(HAS BEEN COMPUTED))

((IT)
(IS INSERTED)
AS (THE (PRIMARY ENTRY))
IN (A (TRANSMISSION SCHEDULE))))

FOR (EACH RATS ENTRY)
(PERFORM)
(:((THE RATS'S (RELATIVE TRANSMISSION TIME))

(IS COMPUTED) ACCORDING-TO (FORMULA-1))
((THE RATS'S (CLOCK TRANSMISSION TIME))
(IS COMPUTED) ACCORDING-TO ("FORMULIA-2"))))

((ilE RATS (TRANSMISSION TOES))
(ARL ENTERED)
INTO (THE SCHEDULE))

figure 1.4

SPECIFICATION ACQUISITION 17

SPEC;FICATION DEFICIENCIES OF

LINK SCHEDULING EXAMPLE

*THE SOL IS SEARCHED FOR AN.EfTRY-OR-,YHE SUBSCRIBER. *p~-

*IF ONE j S FOUND, AiH E +SCRIBER'S RLATIVE TRANSMISSION TIME -49- 4OMPUWO

AGGORGING-TO FORMULA-f,! a~l~xg- 4-t~l ,

THE SUBSCRIBER'S CLOCK TRANSMISSION TIME IS COMPUTED ACCORDING TO

FOMLA: Jvx,_L~t'D

WHEN THEpTRANSMISSION TIME HAS BEEN COMPUTED, IT,.IS INSERTED AS THE PRIMARY ~"~"

ENTRY IN A TRANSMISSION SCHEDULE

*FOR EACH RATS ENTR , THE RATS'S RELATIVE TRANSMISSION TIME IS COMPUTED

ACCORDING TO FORMULA-I AND TH4E RATS'S CLOCK TRANSMISSION TIME IS COMPUTED

ACCORDING TO FORMULA-2.

* 4 RATS/TRANSMISSION TIMES ,ARE ENTERED INTO THE SCHEDULE.

Figure 1.5

SPECIFICATION ACQUISITION 18

PROGRAM CREATED BY PROTOTYPE SYSTEM

(build-transmission-schedule (sol subscriber)
(CREATE transmission-schedule)
(search sol FOR A subscriber-entry SUCH THAT

sid OF subscriber EQUALS sid OF subscriber-entry)
(IF (locate A subscriber-entry SUCH THAT

sid OF subscriber EQUALS sid
OF subscriber-entry IN sol)

THEN
(MAKE (RESULT-OF (FORMULA-i subscriber-entry))

BE THE relative-transmission-time OF subscriber)
(MAKE (RESULT-OF (FORMULA-2 subscriber-entry))

BE THE clock-transmission-time OF subscriber))
(FOR ALL rats WHICH ARE IN sol

DO (MAKE (RESULT-OF (formula-i rats))
BE THE relative-transmission-time OF rats)

(MAKE (RESULT-OF (formula-2 rats))
BE THE clock-transmission-time OF rats))

(FOR ALL clock-transmission-time OF rats
DO (MAKE clock-transmission-time BE THE

transmission-time OF (CREATE transmission-entry))
(ADD transmission-entry TO transmission-schedule)))

(WHENEVER (MAKE time BE THE clock-transmission-time
OF subscriber)

O (MAKE time BE THE transmission-time
OF (CREATE transmission-entry))

(ADO transmission-entry TO transmission-schedule)
(MAKE transmission-entry BE THE primary-entry

OF transmisslon-schedule))

Figure 1.6

Jt
I

SPECIFICATION ACQUISITION 19

Using the same measures of imprecision as in the first example, we find
that this example has about half as many imprecisions.

Number of missing operands a 7
Number of incomplete references = 12
Number of implicit type conversions M 3
Number of terminology charges z 8
Number of refinement or elaborations = 9
Number of implicit sequencing decisions w 4

The example is interesting as a test of the generality of the mechanisms that
worked on the first example, and because of the new issues it raises. We will
examine each of these to illustrate the range of capabilities added to the prototype
to enable it to correctly understand this example and produce the operational
program of Fig. 1.6.

1. Scope of conditional. In natural language communication the end of a
conditional is almost never explicit. Instead, context must be used to
determine whether subsequent statements are part of the conditional. In
sentence 3 of the example, the input to formula 2 is the SOL entry found
in the previous sentence. Thus, sentence 3 is really part of the conditional
statement.

2. Implicit formation of relations. In sentence 2, the relative transmission time
produced by formula I is supposed to be associated with the subscriber.
Since that association is not established elsewhere, it is implicitly being
established here. Hence this passive construct must be treated as an active
one.

3. Implicit creation of outputs. In a similar fashion, various sentences establish
associations with a transmission schedule (the output of this example) but
an instance of one is never explicitly created. Such usage indicated that
an implicit creation of the output is required.

4. Expectation failure. In addition to process and structural statements, a
specification normally contains expectations about the state of the
computation at some point which provide context for people to explain
why something is being done or some properties of its result. They also
provide some redundancy against which an understanding of the
specification can be checked. In the example, one of these expectations
(that all of the components of the entries of the output have been

produced) fails, which indicates either a misunderstanding of the

&li" I I I I III I I

SPECIFICATION ACQUISITION 20

specification or an inconsistency or incompleteness. In this case, both our
example and the actual specification from which it was drawn are
incompletel they fail to describe how the length field of the entries of the
transmission schedule are calculated from the inputs.

The third example is from the same satellite communication system as the
previous example. This portion specifies the component of the system which
determines whether the entire text of a message received over the satellite channel
should be printed, or only its header. This determination is based on the type of
message, for which several different cases are specified, and upon whether the
message is "addressed" to the subscriber. This, in turn, is determined by seeing if
the message contains an addressee which is in one set (the COL) but not in another
(the NP).

The parenthesized informal specification used as the actual input for the
third example is shown in Fig. 1.7. Figure 1.8 shows some of the informal
constructs contained in the input, and a stylized version of the formal operational
abstract program produced by the prototype system is contained in Fig. 1.0.

SPECIFICATION ACQUISITION 21

ACTUAL INPUT FOR NARRATIVE MESSAGE
ANALYSIS EXAMPLE

((The CGL) (is) (a list of (addressees)))).

((The NP) (is) (a list of (addressees)))).

((((Link messages)) ((first-run messages))

and ((normal mode) (rerun broadcast messages)))
(are screened) by ((comparing) (all addressees In
(the message)) with (the CGL)) in-order-to ((determine)
(whether ((the message) (is) ((addressed) to (the subscriber)).

(During ((screening)) (initially (compare) (an addressee)
with (the NP)))).

(If ((the addressee) (matches)) ((continue) ((screening))
with (the next (message) addressee)))).

((Messages with (an addressee ((matching) (a (CGL)
entry) (are) ((addressed) to (the subscriber)))).

(Context: (((Link messages)) and ((first-run broadcast
messages)).

((Messages ((addressed) to (the subscriber))) (are noted)
so-that ((he message) (will be printed)))).

((Messages (not ((addressed) to (the subscriber) (are
noted) so-that ((the (message heading)) (will be printed)))).

((((First-run RS messages)) and ((first-run OLE messages)))
(are noted) so-that ((the message) (will be printed)))).

(Not ((do screen) (((first-run RS messages)) and ((first-run
OLE messages)).

(((OLE messages)) (are output) on (the (utility punch)))).

Figure 1.7

SPECIFICATION ACQUISITION 22

Specification Deficiencies of Narrative
Message Analysis Example

The CGL is a list of addresses.

The NP is a list of addresses.

Link messages first-run messages and normal mode rerun brofd~ast message are
- screened by*comparing &H addresses in the message with C .n-order-to determine

whether the message is addressed to the subscriber. .. .

During screening initially c e an an addressee i e NP.

If the(! asee e Cc~~tiu scen ith the netMsaeddresee7 -

Intv ri ; Messages w k an addressee matching a CGL entry are addressed to the subscriber.

Context. Link messages and first-run broadcast messages.

jv1 ssage$' addressed to the subscriber ire notedso-that the message will be printed.

A Message$ not addressed to the subscriber We noted so-that the message heading will be
printed.

First-run RS messages and first-run OLE messages are notedso-that the message will be
printed.

Do not screen &r un RS messages and first-run OLE messages.

OLE messages are output on the utility punch.

F'

SPECIFICATION ACQUISITION 23

PROGRAM CREATED BY PROTOTYPE SYSTEM

INFERENCE RULE:
(message-addressee addressee IN message)

AND (match addressee addresseeal)
WHERE (element addressee*I cgl)

IMPLIES
(addressed message TO subscriber)

Screen (message)
LooplI:

FOR EACH (message-addressee addressee*l
IN message)

DO
FOR EACH (element addressee*2 NP)

DO (compare addressee*I TO addressee2
BY eq)

IF (match addressee#1 TO addressee#3 BY eq)
WHERE (element addressee*3 np)

THEN (continue loopi with addressee*4)
WHERE (message-addressee addressee*4

IN message)
AND (successor addressee#4 OF addressee#l)

FOR EACH (element addressee#5 cgl)
DO (compare addressee#1 TO addressee*5 BY eq)

Top-Level-Program (message subscriber utility-punch)
IF (is message A first-run-message) OR (is message

A normal -mode -rerun-broadcast-message)
THEN IF (not (is message A first-run-rs-message)

OR (is message A first-run-ole-message))
THEN DETERMINE WHETHER (addressed message TO

subscriber)
BY (screen message)

IF (addressed message TO subscriber)
THEN (mark message WITH mark*l)

FOR PURPOSE (print message)
ELSE IF (not (addressed message TO subscriber)

TIEN (mark message WITH mark*2)
FOR PURPOSE (print header)

WHERE (message-header header OF message)
IF (is message A first-run-rs message) OR

(is message A first-run-ole message)
THEN (mark message WITH markel)

FOR PURPOSE (print message)
IF (is message A ole-message)

THEN (output message ON utility-punch)

Figure 1.9

SPECIFICATION ACQUISITION 24

In addition to the types of informality described previously, this example also
contains the following:

1. Discovered parameters. Normally, references to objects within a procedure
body are resolved by equating them to some known objects (a parameter,
Iteration variable, or variable determined by a data base pattern match) or
by finding a close association between one of the known objects and the
reference. When both these methods fail, the prototype system recognizes
that it is unable to resolve the reference in the current context. It
therefore assumes that the reference must be resolved in some larger
context (i.e., the context existing when the procedure is called). It
ensures this resolution by making the unresolved reference a parameter of
the routine and requiring that it be supplied in each call to that routine.
The "subscriber" and "utility-punch" parameters to the top level program
are discovered by this means.

2. Dynamic reference. Similarly, the inference rule (sentence 6) contains a
reference to "subscriber" that cannot be resolved within the context of the
inference rule itself, but must be resolved instead in the larger context in
which the rule is invoked. The inference rule is fired during the compare
operation inside of "screen" (which is called by the top level program)
when (and if) a match occurs. Hence, its dynamic context is the active
portions of those routines. Within this dynamic context, resolving the
"subscriber" reference is quite straightforward. It is simply a reference to
the "subscriber" parameter of the top level program.

3. Combination of separate conditional clauses. Often, in informal descriptions a
succession of IF-THEN statements (with no ELSE clause) specify the
mutually exclusive actions to be performed for the various cases.
Recognizing such mutual exclusion is, of course, critical to a semantic
understanding of the specification and is dependent upon determining that
the truthfulness of one of the predicates is sufficient to ensure that none
of the others is simultaneously true. Because the prototype system has
such a mechanism, it is able to combine the actions to be performed when
the message is and is not addressed to the subscriber into a single
IF-THEN-ELSE statement.

4. Special action semantics. We have attempted to remove all representation
issues from the specification through our use of the relational data base.
This has been highly successful, but some representation issues still
remain., The notion of marking or noting something is such a case. Some
value (the mark or notation) is associated with an object so that at some
later point the existence of the association and particular value will

SPECIFICATION ACQUISITION 25

trigger some action. Naturally, the correspondence between a particular
value and an action or goal is a representation issue. To remove this
problem, the prototype system maintains a set of goals (or purposes) to be
achieved at some later time and a set of marking values associated with
these goals. When the informal specification specifies a marking
operation without indicating the marking value, then the purpose of the
marking operation is used by the prototype system to determine the
appropriate marking-value. This construct occurs in the three marking
operations in this example.

APPENDIX II

The prototype system is structurally quite simple. It has three phases
(Linguistic, Planning, and Meta-Evaluation) that are sequentially invoked to
process the informal specification. Each phase uses the results of the previous
phases, but no capability currently exists to reinvoke an earlier phase If a
difficulty is encountered. Hence, either ambiguity must be resolved within a
phase or the possibilities passed forward to the next phase for resolution.

We will describe the prototype system by working backward from the goal
through the phases (in reverse order) toward the input to expose the system design
and provide context for understanding the operation of each phase.

The goal of the system is to create a formal operational specification from the
informal input, which means that it must complete each of the partial descriptions
in the input to produce the output. In general, each partial description has several
different possible completions, and a separate decision must be made for each
partial description to select the proper completion for It.

Based on the partial description and the context in which it occurs, an a priori
Irdered set of possible completions is created for each partial description. But one

decision cannot be made in isolation from the others; decisions must be consistent
with one another and the resulting output specification must make sense as a
whole. Since the output is a program in the formal specification language, it must
meet all the criteria for program well-formedness. Fortunately, programs are
highly constrained objects (one reason they are so hard to write), so there are many
well-formedness criteria which must be satisfied.

This provides a classical backtracking situation, since there are many
interrelated individual decisions that in combination can be either accepted or
rejected by some criteria (the well-formedness rules). In such situations, the
decisions are made one at a time in some order. After each decision the object
(program) formed by the current set of decisions is tested to see if it meets the

SPECIFICATION ACQUISITION 26

criteria (well-formedness rules). If it does, then the next decision Is made, and so
on, until all the decisions have been made and the result accepted. If at any stage
the partially formed result is rejected, then the next possibility at the most recent
decision point is chosen instead and a new result formed and tested as before. If all
possibilities -have been tried and rejected for the most recent decision point, then
the state of the decision-making process is backed up to that existing at the
previous decision point and a new possibility chosen. This process will terminate
either by finding an acceptable solution (formal specification) or by determining
that none can be found. The resulting object (program) is an acceptable solution
(formal specification) for the problem (informal specification).

The order in which decisions (rather than the order of alternatives within a
decision) are made should be chosen to maximize early rejection of infeasible
combinations of decisions. This requires that the rejection criteria can be applied to
partially determined objects. The preferred decision order ts clearly dependent on
the nature of the acceptance/rejection criteria.

We now let the nature of the well-formedness criteria determine the
structure of the prototype system so that the early rejection possibilities inherent
in the criteria can be utilized. The criteria fall into three categories: dynamic
state-of-computation criteria, global reference criteria, and static flow criteria.
Each of these categories must be handled differently.

The dynamic state-of-computation criteria are based only on the current
"state" of the program and its data base (e.g., "the constraints of a domain must not
be violated" and "it must be possible to execute both branches of a condition").
They require that all decisions that affect the computation to that point (but not
beyond) must be made before the criteria can be tested. Thus, if decisions could be
made as they are needed by the computation of the program and the program "state"
examined at each stage of the computation, then the dynamic state-of-computation
criteria could be used to obtain early rejection of infeasible decisions.

This is exactly the strategy adopted in the design of the prototype system.
However, since no actual input data is available for the program to be tested, and
since the program must be well-formed for a variety of inputs, symbolic inputs
rather than actual inputs are used. Instead of actual execution, the program is
symbolically executed on the inputs, which provides a much stronger test of
well-formedness than would execution on any particular set of inputs.

However, completely representing the state of the computation as a program
is symbolically executed is very difficult (e.g., determining the state after
execution of a loop or a conditional statement) and more detailed than necessary for
the well-formedness rules. Therefore, the prototype system uses a weaker form of

- _- --t- - e

SPECIFICATION ACQUISITION 27

interpretation, called Meta-Evaluation, which only partially determines the
program's state as computation proceeds (e.g., loops are executed only once for some
"generic" element, and the effects of THEN and ELSE clauses are marked as
POSSIBLE, but are not conditioned by the predicate of the IF). This
Meta-Evaluation process is much easier to implement and still provides a wealth of
run-time context used by the acceptance/rejection criteria to determine program
well-formedness.

The global referencing criteria (such as "parameters must be used in the body
of a procedure") test the overall use of names within the program and thus cannot
be tested until all decisions have been made. They are tested only after the
Meta-Evaluation is complete.

The final category of criteria, static flow (e.g., "items must be produced
before being consumed" and "outputs must be produced somewhere"), are more
complex. The Meta-Evaluation process requires a program on which to operate,
which may contain partial descriptions that the Meta-Evaluation process will
attempt to complete by backtracking. This program "outline" is created from the
informal input for the Meta-Evaluation process by the flow analysis, or Planning,
phase, which examines the individual process descriptions and the elaborations,
refinements, and modifications of them in the input, then determines which pieces
belong together and how the refinements, elaborations, and modifications interact.
It performs a producer/consumer analysis of these operations to determine their
relative sequencing and where in the sequence any unused and unsequenced
operations should occur. This analysis enables the Planning phase to determine the
overall operation sequencing for the program outline from the partial sequencing
information contained in the input. It uses the data flow well-formedness criteria
and the heuristic that each described operation must be invoked somewhere in the
resulting program (otherwise, why did the user bother to describe it?) to complete
the partial sequence descriptions.

If the criteria are not sufficiently strong to produce a unique program
outline, the ambiguity must be resolved either by interacting with the user or by
including the alternatives in the program outline for the Meta-Evaluation phase to
resolve as part of its decision making process. In the prototype system, the
Meta-Evaluation phase is prepared to deal with only minor sequencing alternatives
such as the scope of conditional statements (if a statement :ollowing a conditional
assumes a particular value of the predicate, it must be made part of one of the
branches of the conditional) and demons. (Are all situations which match the
firing pattern of a demon intended to invoke it or only those which arise in some
particular context, and if so what context?) Major sequencing issues--such as
whether one statement is a refinement of another or not--that cannot be resolved
by the Planning phase must be resolved by the user before the Meta-Evaluatior,
phase.

SPECIFICATION ACQUISITION a8

Both the Planning and Meta-Evaluation phases use a structural description of
the application domain to provide context for their program execution, and
inference rules that define relation interdependencies in the process domain. This
structural base is the application-specific foundation upon which the Planning and
Meta-Evaluation phases rest, and must be provided before they are invoked. It
contains all the application-specific contextual knowledge. It augments the
system's built-in knowledge of data flow and program well-formedness and
enables the system to be specialized to a particular application and to use this
expertise in conjunction with its built-in program formation knowledge to
formalize the input specification.

The construction of a suitable application-specific structural base is itself an
arduous, error-prone task. Furthermore, our study of actual program
specifications indicated that most of the structural information was already
informally contained in the program specification. We therefore decided to allow
partial descriptions in the specification of the structural base and to permit such
descriptions to be intermixed with the program specification.

Since we are concerned only with the semantic issues raised by using partial
descriptions in the program specification, the system uses a parenthesized version
of the natural language specification as its actual input to avoid any syntactic
parsing issues. This parenthesized input does not affect the semantic issues we
have discussed.

The first tasks, then, of the system are to separate the process descriptions
from the structural descriptions, to convert both to internal fora, and to complete
any partial structural descriptions. These tasks comprise the system's Linguistic
phase, which precedes the other two.

If a formal structural base already exists for some application, then, of course,
it is loaded first and is augmented by and checked for consistency with any
structural statements contained within the program specification.

Thus, in chronological order (rather than the reverse dependence order used
above), the system's basic mode of operation consists of reading an input
specification, separating it into structural and processing descriptions; completing
the structural descriptions and integrating the result into any existing structural
base; determining the gross program structure by producer/consumer analysis
during the Planning phase; and, finally, determining the final program structure
through Meta-Evaluation.

29

2. MILITARY MESSAGE EXPERIMENT

Research Staff: Support Staff: Contributing Staff:
Robert H. Stotz Joan Malone Vernon Dieter
David Wilczynski Jeanne Ramirez George Dietrich
Don Oestreicher Nelson Lucas
Wrenwick Lee Robert Parker
Paul Raveling Chloe HoIg
Leroy Richardson
Jeff Rothenberg
Ron Tugender
Elaine Sonderegger

INTRODUCTION

The Military Message Experiment (MME) is a joint program funded by DARPA
and the Navy, taking place at CINCPAC (Commander-in-Chief, Pacific
Headquarters). An operational test of an experimental, on-line interactive message
handling system will be conducted at Camp Smith, Oahu, Hawaii, by a selected set
of users from CINCPAC's Operations Directorate (J3), including the Command Center
and the groups supporting it. The test calls for 25 CRT terminals plus seven
electrostatic printers, distributed appropriately in the Command Center and the
offices of the J3 staff, connected to a PDP-10 running the TENEX operating system
and the SIGMA message service developed by ISI. The experiment is planned to last
until October 1, 1979.

The test is intended to evaluate the utility of an interactive message service
and study its impact on the user organization; in addition, it will provide much
Insight into how future message systems for this type of environment should be
des igned and built. Experience with civilian users of interactive message systems
(e.g., the ARPANET community) has shown that the basic fabric of communication
within the user organization has often been altered, though the nature of the
change depends on such variables as who else is on the service, accessibility of the
terminals, difficulty of learning the system, reliability of the service, features
offered, response time, etc. A primary goal of MME is to learn the effect of these
variables on the message service in the command and control environmeut. With
this information, the various military organizations responsible for
communications will be more effective in specifying the requirements for future
production systems.

MILITARY MESSAGE EXPERIMENT 30

ISI became involved in this experiment in 1973 when it performed a study of
the, communication needs on the island of Oahu (Ref]. in late 1973 the
Information Automation (IA) Project was formed to investigate the application of
automation to military communications. The concept of conducting an experiment
in an operational military command evolved slowly. In December 1975 a
Memorandum of Agreement was signed by DARPA, COMNAVTELCOM,
COMNAVELEX and CINCPAC, defining the MME. At that time three DARPA
contractors, including ISI, were working on candidate message systems for MME.
In February 1977 an extensive evaluation of the three systems was made and ISl's
SIGMA message system was selected. The PDP- 10 computer and five user terminals
were installed in May 1977 at CINCPAC, and SIGMA was brought up.

During the next 12 months the system was shaken down and gradually
improved. A few "friendly" users were introduced to the system and their
evaluation influenced the direction of subsequent SIGMA development. Experience
was rained in how to train users, resulting in increased emphasis in on-line
self-contained training aids. By April 1978 SIGMA was receiving all of the J3
AUTODIN traffic (approximately 700 messages daily) on a 24 hour a day basis, 10
terminals were in user's offices, and use of the system by operational personnel
was beginning. Regular Action and Information assignments on the incoming
traffic began in July, and since that time use of the system has increased
signifficantly.

In parallel with the development of the message service, the Navy and ARPA
through MITRE Corporation have been defining the test objectives for MME and the
plan for achieving these [Refs. 2 and 3]. This plan has required that SIGMA contain
a Data Collection Facility (DCF) to log pertinent data about the use of SIGMA. This
data is recorded in TENEX files on a continuous basis, and at regular intervals it is
dumped from files to magnetic tape and sent to MITRE for analysis.

PROGRESS DURING THE REPORTING PERIOD

The fundamental design of SIGMA and the terminals was established several
years ago. An overview of system design and implementation, as well as terminal
development, through 1977 are given in [4 and 5]. Preliminary thinking about the
design of this system can be found in Refs. 6-14. The principal task since then has
been SIGMA's implementation as an efficient, responsive system capable of being
run 24 hours a day, 365 days a year. In March 1977, when SIGMA was chosen over
two competitive systems to be the message service for MME, at the time it was
deficient in several aspects. A number of desired functions had not been
implemented, and the system's response was far too slow to support 25 users. After
SIGMA was brought up at CINCPAC in May 1977 and users began using the system,

MILITARY MESSAGE EXPERIMENT 31

another deficiency became apparent. The Daemons, as they were implemented,
were too fragile to be be maintained on a round-the-clock basis. This occurred
because they were designed very early on before their requirements and functions

were well understood.

The bulk of the effort expended during the reporting period was directed
toward bringing SIGMA to an operationally acceptable level. This was done while
continuously running the CINCPAC system for user introduction and training.
From July 1, 1977, through June 30, 1978, ten releases of new software were
installed.

The first three months of the period from July to September 1977 were
focused primarily on functional deficiencies. In the fall and early winter, the
main emphasis was shifted to improving performance. The last four months were
chiefly devoted to maintainability. We have been successful in all of these
endeavors.

Functions

A number of functional improvements were made during the reporting period
to bring SIGMA to the point where it is considered operationally usable. As the
system was used, the importance placed on the various functions changed, so that

some features considered desirable at the time of SIGMA's selection are still not
implemented, while others, not considered then, have been installed. The
following features were added during the past year: data collection, lessons and
exercises, security and accountability features, function keys, archive and the

ROUTE instruction.

The data collection facility automatically gathers the information for analysis
of the use of the message service at CINCPAC. Data collection is performed in the
User Job. Each instruction and function key executed by the user is logged into a
special data collection file in each user's directory along with appropriate data for
analysis. Additional data, called Points, are recorded at special points throughout
the execution of certain commands. A simple data reduction program is provided
for quick looks at these data collection files.

One of the challenges of MME is to train users without taking them away
from their work for classroom training. The approach taken is to make SIGMA as

self-instructive as possible, and let the users train themselves on-line at their
convenience. SIGMA provides interactive training facilities in the form of on-line
lessons and exercises. Whenever a user wishes, he may issue the LESSON

instruction with the number of the lesson he wants to take. This enters him into a
tutorial session describing a particular facet of the service. At appropriate points in

MILITARY MESSAGE EXPERIMENT 32

the lesson the user is invited to try an exercise. He does this by executing the
EXERCISE instruction with the number of the exercise to be conducted. The
exercise has a tutorial phase which first explains the instruction to be executed,
then suggests the user try it. When the user executes the instruction, SIGMA
performs the command on a dummy data base, thereby protecting the user's real
data. The user may switch between the tutorial text and the command results with
simple key pushes. The entire service is covered in a series of 12 lessons and 23
exercises.

The original design of SIGMA used the function keys of the terminal simply
as alternates to typing. Each key would print in the Instruction Window an
assigned text string of either a SIGMA instruction or a SIGMA parameter word.
Instruction keys were grouped together, parameter keys were grouped in another
set, and security-related keys formed a third group. To execute the DISPLAY NEXT
ENTRY instruction the user pressed the two function keys DISPLAY, NEXT ENTRY,
then pressed EXECUTE. Upon EXECUTE, SIGMA would parse the command as
though the user had typed DISPLAY NEXT ENTRY in the Instruction Window.

Although this seemed like a simple, consistent command interface that
mimimized typing requirements, slow system response made It unwieldy. After
each key push, the user had to wait for SIGMA to interpret the key, write the text
string .,. to the Instruction Window, and return the cursor to the terminal before
the next key could be pushed. It was faster to hunt and peck to type the
instruction into the Instruction Window, since it required computer interaction
only on the EXECUTE key. In August 1977, the Command Language Processor in
SIGMA was changed to interpret the function keys as full instructions to be
executed. Now a single function key initiates an instruction like DISPLAY NEXT
ENTRY. As soon as the key is pushed, SIGMA can proceed to execute without the
normal parsing and with none of the delay of writing to the Instruction Window,
returning the cursor and waiting for the next key push. This change improved
SIGMA performance in terms of CPU seconds required to execute a command and
user performance in real time required to perform a given task.

In the CINCPAC environment, an apparently insignificant message which
could have been received months earlier may suddenly become critical
information. Since the system has only enough secondary memory to store about
.O days' worth of traffic, every message received must be archived in off-line

storage for potential later retrieval. In June 1978 an archive facility, based on the
TENEX BSYS system used to archive TENEX files, was added to SIGMA. It writes
onto archive tape and deletes from disk any message that has not been referenced in
n days, where n is a variable specified by the operator.

MILITARY MESSAGE EXPERIMENT 33

Archiving a message does not affect file entries that may point to that
message. If a user asks to display the message (normally through some file entry),
he is told it is archived and to push YES or NO function keys to indicate whether it
should be retrieved. Retrieval of a message produces a RETRIEVAL citation to the
message in the user's Pending File.

A key user of SIGMA is the administrative aide (titled J301) who assigns
messages for action, forwards them for information, and builds readboards for
nearly all incoming AUTODIN messages to SIGMA. Since he deals in such a large
number of messages (500-700 per day), J301 needs all the help he can get.

The ROUTE command was invented to combine all the operations performed
on a message by J301 (Action, Forward, File, Delete) into a simple one-step process.
ROUTE takes as an argument a text object which contains specially formatted
specifications for the Action, Forward, File and Delete operations to be performed.
Most of these Route Lists are permanently stored in the system, but they can be
built dynamically as they are needed. ROUTE accepts lists of file entries, which
speeds J301's job tremendously, since SIGMA's retrieval instructions (RESTRICT,
AUGMENT) make it easy to collect messages into classes that get the same
assignments. Early experience indicates he can process his traffic four times faster
with SIGMA than he can manually.

Performance

Many changes were made to improve system throughput. Initially intuition
was the only guide to increasing the system's speed. Later Bolt Beranek and
Newman supplied measurement tools that allowed us to quantitatively evaluate
performance improvements in terms of CPU seconds saved for a given instruction.
Other tools allow us to measure system overhead and identify the limiting
computer resources (e.g., central processor cycles, page swapping, disk channel
bandwidth, file access to new data). These tools have helped identify where to
focus our efforts.

The results of these measurements showed that SIGMA limits first on CPU
cycles, but it also has a very high page swapping rate. This indicated the program
was too big for the memory allotted (512K words) and did too much computation,
even for simple operations. Over three-quarters of the CPU cycles were spent in
TENEX, either in the monitor or executing JSYS calls. A later study and analysis
done with the cooperation of BBN identified the actual time required by each JSYS.
This was the first time this information had been available. The system was
changed to take advantage of what was learned from the JSYS study, which
improved performance by about 86 per cent.

MILITARY MESSAGE EXPERIMENT 34

The most significant change to SIGMA for performance purposes was the
introduction of a global text package, which allows the multiple forks of a job to
refer to text through nonvariant pointers rather than having to copy the text from
fork to fork. This change implied a new representation of messages and user files
on disk and completely different processes for handling text.

Coding efficiency changes generally involved simplifying the mechanisms to
accomplish specific tasks. For example, when SIGMA originally opened a file for a
user, it created in primary memory the entire Virtual Terminal (VT) image of the
file. Now SIGMA generates only as much of the VT image as it displays. If the user
scrolls to see a part of the file that is not in the terminal, SIGMA generates the VT
image on demand.

Another technique implemented to give the user better response to his
commands has been to move functions into background processing (i.e., to the
Daemons). For example, when the user forwards a message for Action (execute an
ACTION command), the system adds the new addressee to the Action field of the
message, sends a citation to his Pending file, and sends a citation to a special file
called the Action Log. All of this processing, which used to be done in the user's
Job , is now done by the Message Daemon. Note that the total amount of processing
done by the system is the same, but that the user is freed to handle the next
instruction much sooner. By having the Daemons in a separate process group (pie
slice) from the user jobs, we can tune the average queue length for the Daemons.

Maintainability

As SIGMA began to be used on a round-the-clock basis in late 1977, it became
evident that the background Daemons were not adequately designed for
maintainability. Because these processes do not have a user watching them, they
must be very robust, capable of generating complete yet appropriate logs to allow
thorough post mortems of any problems. Since the Daemons were designed early in
SIGMA's history, when the requirements were not well understood, many
mechanisms provided turned out to be unnecessary and made the code unduly
complex. Release 2.0 in June 1978 primarily dealt with a complete reorganization
of the Daemons. As a side benefit they were made smaller and considerably faster.

The new Daemons, implemented for Release 2.0, provide the same basic
functions as their predecessors (except for the Archive Daemon, which provides a
new function). However, each Daemon has a much simpler process structure,
consisting of a top Program Control (PC) fork and one working fork that performs
the processing of the Daemon functions. Those Daemons that must alter messages
and/or user files may also contain a lower fork of a File Access Module or Message
Access Module, which accesses files or messages, respectively. Not only is this

MILITARY MESSAGE EXPERIMENT 35

structure simpler than before, but much of the code is now common across all
Daemons and is shared; this simplifies maintenance and reduces the number of
pa'es to be loaded. A simple queue replaces the old Daemon interface, which relied
on synchronous communication by means of TENEX signals. Now User Jobs are
completely independent of Daemons and can run whether the Daemons are up or
down.

The new Daemons use a new, more flexible error logging and tracing package.
They now produce separate logs for the different individuals interested in their
performance. All successful operations are reported in a Log file. Errors are
reported in both a ShlORT-ERROR LOG, where an operator can get a quick summary
of problems, and a LONG-ERROR LOG, where programmers can look at the detailed
state of the process at the time the error occurred. A Trace file contains even more
abundant information for the programmer. In addition, any unusual condition
detected by a program may be reported to the operator directly.

FUTURE WORK

In July 1978 limited experimental use began. In this phase of the experiment
users are free to use the message service for whatever they wish. J301, who does
Action assignment and distribution of J3's traffic, processes all traffic received so
that Action officers have electronic equivalents of their readboards, and inital
Action assignments are recorded by SIGMA.

New software releases in September and December of 1978 are intended to
provide further performance improvement and several new functions. A new
mechanism will be provided for alerting users and giving them immediate access to
new messages as they arrive. Discretionary access controls will be provided for
users' files and for messages. As the users gain experience with the service, they
are suggesting other new features and facilities to allow them to be more
productive with SIGMA. Already the list of desired enhancements includes such
things as a facility for users to highlight text, a restructuring of memo formats,
and changes to our current model for coordination. Each of these improvements
will be considered. those that seem reasonable will be made. It is precisely this sort
of feedback and our ability to respond to it that distinguishes this experiment from
the more usual production system installation.

MME has been operating for the past year and a half with contractual
responsibility for the system split between ISI, who supplies the application
software (SIGMA) and the terminals, and another contractor, who provides and
maintains the computer hardware with the TENEX operating system and the
PDP- 11 terminal controller. This divided responsibility has not been effective in

MILITARY MESSAGE EXPERIMENT 36

tracking down problems that arise or in coming up with creative ideas for
improving overall system peformance. In October 1978, ISI took over full system
responsibility. In addition, a new KL computer system was installed to replace the
two KA's, which has doubled throughput at least. The KL runs KI Emulation
microcode.

REFERENCES

1. Ellis, T. 0., J. F. Heafner, L. Gallenson, and J. T. Melvin, A Plan for
Consolidation and Automation of Military Telecommunications on Oahu,
USC/Information Sciences Institute, ISI/RR-73-12, May 1973.

2. Goodwin, N. C., J. Mitchell, and S. W. Slesinger, Test Plan for Military
Message Handling Experiment, Volumes I and II, MITRE Corporation,
MTR-3268, July 1976.

3. Goodwin, N. C., and S. W. Slesinger, Test Procedures for Military Message
Handling Experiment, MITRE Corporation, MTR-3521, October 28, 1977.

4. 1977 Annual Technical Report: A Research Program in Computer Technology,
USC/Information Sciences Institute, ISI/SR-77-8, September 1977.

5. Stotz, R., R. Tugender, D. Wilczynski, and D. Oestreicher, "SIGMA: An
Interactive Message Service for the Military Message Experiment," 1979
AFIPS National Computer Conference Proceedings, (to be published).

6. Tugender, R., and D. R. Oestreicher, Basic Functional Capabilities for a Military
Message Processing Service, USC/Information Sciences Institute, ISI/RR-74-23,
May 1975.

7. Rothenberg, J. G., An Intelligent Tutor: On-line Documentation and Help for a
Military Message Service, USC/Information Sciences Institute, ISI/RR-74-26,
May 1975.

8. lloafner, J. '., A Methodology for Selecting and Refining Man-Computer
Languages to Improve Users' Performance, USC/Information Sciences Institute,
ISI/RR-74-Z1, September 1974.

9. Abbott, R. J., A Command Language Processor for Flexible Interface Design,
USC/Information Sciences Institute, ISI/1R-74-24, September 1974.

10. Rothenberg, J. G., An Editor to Support Military Message Processing Personnel,
USC/Information Sciences Institute, ISI/RR-74-27, June 1975.

L_ 1

MILITARY MESSAGE EXPERIMENT 37

11. Hoafner, J. F., Protocol Analysis of Man-Computer Languages: Design and
Preliminary Findings, USC/Information Sciences Institute, ISI/RR-75-34, July
1975.

12. Heatner, J. F., M. D. Yonke, and J. G. Rothenberg, Design Considerations for a
Computerized Message Service Based on Washington, D.C., Navy Personnel,
USC/Information Sciences Institute, ISI/WP-1, May 1976.

13. Ileafner, J. F., and L. H. Miller, Design Considerations for a Computerized
Message Service Based on Triservice Operations Personnel at CINCPAC
Headquarters, Camp Smith, Oahu, USC/Information Sciences Institute,

ISI/WP-3, September 1976.

14. Heafner, J. F., L. H. Miller, and B. A. Zogby, SIGMA Message Service Reference
Manual, USC/Information Sciences Institute, ISI/WP-5, February 1977.

39

3. PROGRAM VERIFICATION

Research Staff: Research Assistants: Support Staff:
lHalph L. London Roddy W. Erickson Lisa Moses
Raymond L. Bates David G. Taylor Betty Randall
Susan L. Gerhart
David R. Musser
David H. Thompson
David S. Wile

INTRODUCTION

Our work concerns the process of constructing computer programs in ways
that make it possible to verify that each program meets its specifications. Given
some description of a programming task, it is ultimately necessary to construct two
things: a formal specification of the task and a program for carrying out the task.
The central ingredient of our work is the ability to verify the program, i.e.,
demonstrate by a mathematical proof that the specifications and the program are
consistent with each other. The style of specifications and the methods of program
construction, especially from isolatable program components, are all important
influences in making verification feasible. Our work emphasizes the construction
of tools to aid verification, specifically (1) tools to produce theorems sufficient to
express consistency while retaining the relationship between the theorems and the
individual parts of the program, (2) tools to prove the required theorems with the
tools being both sufficiently powerful and sufficiently natural to be guided by
humans, and (3) tools to accommodate changes in programs, specifications,
assumptions, and proof steps that are essential to successful program construction
and verification.

One example from among numerous instances where it is vitally important
that computer software perform according to its specifications is the Security
Kernel being developed for the Unix operating system by G. J. Popek and his
colleagues at UCLA. It is very important that the Kernel permits access to
privileged data only when an individual is allowed an access, i.e., that it maintains
the specified form of data security. A verification using a system developed by this
project is being constructed to demonstrate that the Kernel meets such a
specification.

\ R ~ ~ ~ Fw. t-~ 4 LN

PROGRAM VERIFICATION 40

To support such applications of program verification to critical software
components, the goals of our work are to

- develop a comprehensive, well-integrated set of techniques foi
constructing fully specified and verified software components, from
which large, reliable, and modifiable software can be economically
produced;

- implement the techniques in a widely accessible, user-oriented,
interactive computer system; and

- demonstrate the usefulness and practicality of the techniques and system
in applications to real software where reliability Is of critical concern.

ACCOMPLISHMENTS

Techniques and system Implementation

Our research at ISI has contributed significantly to the understanding of
many of the fundamental issues underlying program specification and verification
and to the development of effective techniques for dealing with these issues.
These techniques include (1) a methodology for employing abstraction and
hierarchical program organization and (2) extended system and language facilities,
including improved specification and theorem proving techniques. We have
implemented many of these new techniques in an experimental verification system
called Affirm. We first discuss the methodology and then focus on some particular
features of the Affirm System.

1. Abstraction and hierarchical program organization. A key to dhe ability to
verify reasonably large programs is the use of abstraction. Programs can be
hierarchically organized into smaller, segregated components which can be
specified by means of abstractions - retaining essential properties at the level at
which they are important while ignoring inessential details. A major concern of
our research has been the development of verification methods that can take
advantage of hierarchical structure in programs and specifications. At the proper
level the necessary details are verified once per definition of the abstraction rather
than once per use of the abstraction.

Structuring programs by using abstractions also has important consequences
in the area of program modification. If changes in representations of abstractions
can be made without changing the abstract properties (as is often the case), it is
necessary to reverify only the definition and not each use of the abstraction.

4

PROGRAM VERIFICATION 41

Indeed, we have reverified modified programs by changing the proofs only in ways
corresponding to the program modifications; it is unnecessary to reverify the entire
program from the beginning.

The techniques of abstraction and hierarchical program organization are
central to the design philosophy of the Alphard language [Alphard] (and to Clu also
[Clu]). The techniques are therefore specific enough to be used in actual, albeit
experimental, programs.

2. Some features of the Affirm System. The Affirm System accepts
specifications of data abstractions and programs in a formal specification language
that can be dynamically extended to new application domains. The system accepts
programs written in a variant of the Pascal language (extended with abstractly
defined data types and some other features of the Euclid language), together with
embedded assertions. The Affirm verification condition generator supports the
standard inductive assertions method and the more recently developed subgoal
assertions method. Affirm also contains a natural deduction theorem prover for
interactive proof of verification conditions and of properties of data abstractions.
Lastly, Affirm is capable of organizing large specifications and collections of
axiomatic and derived properties in an online data base for easy retrieval during
subsequent program or data abstraction verifications. (Affirm is written in
Interlisp and runs on a DEC PDP-10 computer at ISI. It is the successor to, and
combines features of, two previous systems developed at ISI, the Xivus System and
the Data Type Verification System.)

Affirm provides a specification language which has features in common with
programming languages (such as its use of familiar conventions for expression
syntax and declaration structure) and with logical languages (such as first order
predicate calculus). The use of data abstraction is supported by the structure of the
specification language and by the capabilities of the theorem prover component of
the system. The system directly supports the algebraic axioms method of
specification and also easily accommodates another method we have been studying,
that of abstract model specifications (the use of a representation of the data in
terms of some well-known mathematical objects such as sets, sequences, or tuples).
The user can define these abstractions (or access them from a library) as well as
other abstractions that are particularly suited to his application domain. In
conjunction with the theorem prover commands, the user can build up a useful
base of axioms and derived properties about data abstractions that can be invoked in
later proofs. The involvement of those abstractions in proofs may come about
either by their use in expressing programs--e.g., a program which manipulates a
queue or file--or in expressing specifications of programs such as in the inductive
assertions used to express relations between variables used by programs--e.g., the
use of sequences to describe the list of values processed during the execution of a
loop.

PROGRAM VERIFICATION 42

A concept which is extremely important to understanding the Affirm
specification language is the role of equations in specifications and proofs. Affirm

encourages the use of equational specifications of data abstractions, since the
theorem prover is oriented toward performing deductions insofar as possible by
making equational substitutions. The theorem prover is able to conduct such
deductions automatically and efficiently by treating equations, whenever possible,

as rewrite rules. These are rules of the form left -> right where left and right are
expressions containing variables; these rules are used to rewrite expressions by
replacing any subexpression that is matched by left with a corresponding version

of right (i.e., with the same substitutions for variables that were made in matching
left). Rewrite rules are applied to an expression until no further rewriting is

possible. Thus, an essential property of a set of rewrite rules is finite termination,

i.e., that no infinite sequence of rewrites is possible. Another extremely useful
property is unique termination, i.e., that any two terminating sequences of rewrites
starting from the same expression have identical final expressions (no matter what
choice is made as to which subexpression to rewrite or which rule to apply first).
A set of rules with the finite and unique termination properties is said to be
complete. If a set of axiomatic equations can be treated as rewrite rules,

and if these rules or a finite set of rules derived from them are complete, then one

can decide when an equation is provable from the axioms just by rewriting both
sides to their final expressions and checking for identity. Using rewrite rules to
prove equational properties is generally much more efficient than other techniques
which require heuristic searching. Thus the Affirm system attempts to form the
parts of specifications which are equations into rewrite rules which have this
completeness property. For this purpose a version of the Knuth-Bendix algorithm
for completing a set of rewrite rules [Knuth-Bendix, Musser-Texas paper] has been
Implemented and made an integral part of the processing of specifications input to
the system.

This completion algorithm has proved extremely useful in the construction
of complete sets of rewrite rules for data abstractions such as sets and sequences. In

these constructions, one starts with a set of equational axioms of a type along with
one or more equations that are inductive theorems of the data type (i.e., provable

from the axioms and an induction principle). The completion algorithm treats

these equations as rewrite rules and determines additional rules that combine with
the given ones to form a complete set. This complete set will automatically

accomplish many proof steps that otherwise would require the user to carry out a
proof by induction.

The theorem prover component of Affirm is a new prover which replaces the
Bledsoe-Bruell prover used in the Xivus System. Its central design feature is the
use of rewrite rules for many purposes, from performing basic propositional

calculus proofs to searching for proofs by contradiction by using the Knuth-Bendix

PROGRAM VERIFICATION 43

completion process to check for consistency. It is a natural deduction theorem
prover in the sense that it supports a natural style of search for proofs by settian up
goals, splitting into subgoals, and displaying current subSoals In a form as clos
their original form as possible, subject to the simplifications that are performv.
However, it does provide two methods of searching for proofs that are oft
effective when subgoaling has produced current goals that are provable b;,
instantiation of variables: the method of searching for proofs by contradiction
mentioned above, and a method called chaining and narrowing [Lankford- Muaerj.
The latter method is applicable when there exists a single substitution instance of
the current goal that is a tautology in propositional calculus.

The Affirm system has with human guidance in some cases successfully
proved a series of examples including sets, symbol tables, sequences, marking
algorithms, plus parts of the Security Kernel and (see below) the Delta File. In
addition, the system has served as an evaluator of research ideas, and perhaps more
importantly, as a generator of research questions such as proof strategies and
methods for ensuring completeness and consistency.

Verification impact on Euclid, Aiphard, and DoD language designs

In addition to applying verification ideas and methods to verifying programs
and to constructing the verification systems, we have been concerned with
applying the ideas, methods, and point of view to the design of new programming
languages. We have participated in the Euclid language effort (Euclid] which
produced a language for systems programs which are to be verified. An important
part of the effort was the construction of Euclid proof rules [Proof Rules], an
activity which led to an increased understanding of Euclid and to a number of
improvements to the language. Except for machine dependencies, all constructs of
Euclid are in principle verifiable with existing techniques.

In turn, a number of the ideas in Euclid have been incorporated into the
Ironman specifications for DoD language designs [DoD]. We completed an
evaluation of all four preliminary designs for the languages, mainly from the
viewpoint of verification.

In the study of data and control abstractions, information hiding, and
hierarchical program organization in the Alphard language project, verification
concerns were truly symbiotic with programming methodology concerns. The
Alphard language is heavily influenced by the goal to produce verified programs,
for example the direct inclusion in the program of specifications (both abstract and
concrete) for each component, the appearance of clauses to check certain
parameters, and the simplified versions (compared to previously constructed ones)
of control constructs such as generators. Besides the basic form mechanism and the

PROGRAM VERIFICATION 44

iteration and generator constructs, additional features of Alphard that are
essentially completely designed include selectors (special cases are array subscript
and record field selection), reference parameters of procedures, and parameter
binding of all actual parameters. The designs include the required proof rules.
Programs and proofs may now include the standard notion of "location" such as
array element or node of a tree. Indeed the Alphard verification methodology has
been one of the main proof techniques used in verifying the Security Kernel and
the Delta File.

Real-world. relevant, verified examples

UCLA Security Kernel. As mentioned in the Introduction, the Security Kernel
is being developed at UCLA for the Unix operating system. The Alphard
verification methodology is being applied to the data structure abstractions of the
Kernel. All of the abstract specifications and concrete specifications are complete.
The concrete-to-abstract mapping is nearly complete; the proof of the relationship
between the concrete and abstract Invariants is about one-half done. The proof of
the concrete entry assertions is (trivially) complete. The proofs of the abstract exit
assertions and the proofs across the implementation code are complete for several of
the operations of the Kernel.

The Delta File. The Delta File is a component of SIGMA, the operating system
for ISI's Military Message Experiment. Briefly, the task is to permit several users
to modify a single central file simultaneously, subject to certain constraints. The
Delta File code has been thoroughly analysed to produce (1) very high level prose
and Alphard-like specifications of the system and task, (2) algebraic axioms which
describe the tree-like and sequence-like data structures employed in the
implementation, (3) recursive functions that succinctly express the algorithms, (4)
Pascal programs with the abstract data types which more concretely simulate the
actual SIGMA code (written in Bliss), and (5) Alphard-like abstract-to-concrete
links between the Pascal and Bliss programs. The overall specification uses a
mixture of specification methods--algebraic axioms, Alphard, mathematical
notation, and prose--that reveals some of the strengths and weaknesses of each
method.

There are four verification tasks: (a)" an informal argument that if certain
properties hold about the functions of (3) then the requirements in (1) are
satisfied, (b) an Affirm proof that the properties of (a) do hold, (c) Affirm proofs of
the Pascal programs of (4) which show that the functions of (3) are computed by
the programs (including verification condition generation and proof), and (d)
informal proofs (by a Bliss expert) of the abstract to concrete links in (5). Again
the verification is a mixture of informal and mechanical, dealing both with
programs and with properties outside the programs which show that requirements
are satisfied.

PROGRAM VERIFICATION 45

CONCLUSIONS

This experiment and the Security Kernel experiment have shown that formal
specification and verification methods and tools do apply to real,
intermediate-sized, moderately complex software components. We have learned a
great deal about the strengths and weaknesses of these methods, the improvements
that will be needed in our tools, and the resources required for such a specification
and verification effort. Our conclusion is that formal specification and verification
on a task like this is quite feasible, and that the main task now is to improve our
tools and acquire the experience to make this type of programming activity more
practical. An overview of problems and prospects is presented in [Gerhart].

REFERENCES

[DoD] DoD High Order Language Working Group, Department of Defense
Requirements for High Order Computer Programming Languages -- Revised
"Ironman," July 1977.

[Gerhart] Gerhart, S. L., Program Verification in the 1980s: Problems, Perspectives, and
Opportunities, USC/Information Sciences Institute, ISI/RR-78-71, August
1978.

[Alphard] Hilfinger, P., Feldman, G., Fitzgerald, R., Kimura, I., London, R. L., Prasad,
K., Prasad, V., Rosenberg, J., Shaw, M. and Wulf, W. A. (editor), An Informal
Definition of Alphard (Preliminary), Carnegie-Mellon University Technical
Report, February 1978.

[Knuth-Bendix] Knuth, D. E. and Bendix, P. G., "Simple Word Problems in
Universal Algebras," Computational Problems in Abstract Algebra, Leech,
J. (editor), Pergamon Press, New York, 263-297, 1970.

[Lankford-Musser] Lankford, D. S., and Musser, D. R., On Semideciding First Order
Validity and Invalidity, submitted for publication.

[Euclid] Lampson, B. W., Horning, J.J., London, B. L., Mitchell, J. G., and Popek,
* G. J., "Report on the Programming Language Euclid," SIGPLAN Notices, 12, 2,

February 1977. A revised report is in preparation.

[Clu] Liskov, B., Moss E., Schaffert, C., Scheifler, B. and Synder, A., Clu Reference
Manual, MIT Laboratory for Computer Science Computation Structures Group
Memo 161, July 1978.

& _ _ _ _ _ _ _i

PROGRAM VERIFICATION 46

[Proof Rules] London, R. L., Guttag, J. V., Horning, J. J., Lampson, B. W., Mitchell,
J."G., and Popek, G. J., "Proof Rules for the Programming Language Euclid,"
Acta Informatica, 10, 1, 1-26, 1978.

[Musser-Texas paper] Musser, D. R., "A Data Type Verification System Based on
Rewrite Rules," Proceedings of Sixth Texas Conference on Computing Systems,
Austin, Texas, Section IA, 22-31, November, 1977.

47

4. NETWORK SECURE COMMUNICATION

Researrh Staff: Consultant: Support Staff:
E. Randolph Cole Danny Cohen Debe Hays

Stephen Casner Robert Parker
William Fisher George Dietrich
James Koda Oralio Garza
Eric Mader Clarence Perkins
Gertrud Mellstrom Leo Yamanaka
Seth Michaelson

INTRODUCTION

For the past several years, the II Network Secure Communications (NSC)
Project, along with the other contractors in the ARPA NSC Group, has beenimplementing prototype packet voice transmission systems on the ARPANET and
other packet networks. The great success of this work in the prototype stage has
raised many questions for the future. Does it scale up? What will happen if a
packet voice network is built with thousands of extensions? A study by the
Netwok Analysis Corporation J I] concludes that packet voice will scale very well
economically; indeed, the study predicts that an integrated packet data/voice
network will be the lowest-cost means of serving long-range DoD communications
needs.

But a question remains: Will packet voice systems scale up technologically?
To provide the tools and experience to answer this question, ISI and the other AIRPA
NSC contractors are working on bringing packet voice out of the prototype stage,
creating new software, hardware, and protocols for low-cost communications in
the packet network environment of the future.

During the past year, the NSC effort at ISI has concentrated on making
real-time measurements of packet voice, designing generalized structures for
interfaces to packet voice systems, and laying the groundwork for participation in
the satellite-based high bandwidth packet voice experiment.

NETWORK SECURE COMMUNICATION 48

APPROACH

A critical feature of any work in packet voice--whether protocols, software,
or hardware--is flexibility. New hardware developments and accompanying
increases in vocoder capabilities are happening so fast that any packet voice system
or protocol that is inflexible or lacking in generality will be left behind. The same
is true of the networking aspects of packet voice; new types of packet networks
and new implementations of existing types are coming thick and fast. While
complete and total flexibility and generality is not only impossible but surely
extremely inefficient, care must be taken to provide for foreseeable changes,
improvements, and expansion. For example, in the design of the Network Voice
Protocol (NVP) and Network Voice Conferencing Protocol (NVCP) the ARPA NSC
group took care to make the protocols as independent as possible of the specific
vocoder used. Matters specific to the particular vocoder in use are confined to one
phase of the protocol; a new vocoder can be accommodated just by changing a data
table.

Flexibility is particularly important in the testing and comparative
evaluation of new vocoders and other packet voice improvements. During the next
few years, many new vocoders are likely to be developed and will need to be
compared and evaluated; thus network interfaces, protocols, and user interfaces
must be readily available.

Another very important principle of the ISl NSC group has always been to
maximize the usefulness of its products to the ultimate user. The principle is the
same whether the product Is a consumer product or a packet voice system for
military use; if the system is difficult to use, it will not be used, no matter how
careful the underlying design and implementation.

Since the beginning of packet voice experiments, the ISI NSC project has been
aware of the three-way tradeoff between quality, bandwidth, and delay (response
time) in packet voice systems. Changing any one of these three factors affects the
other two. An effort has constantly been made to understand this tradeoff and
exploit it in order to provide the best possible packet voice communication systems.
As a result, a packet voice measurement program was established and is continuing
in an effort to better understand the dynamic behavior of packet networks as it
affects voice traffic.

NETWORK SECURE COMMUNICATION 49

RESEARCH AND DEVELOPMENT GOALS

There are at least three major goals for packet voice research and
development: first, to extend its usefulness to all types of packet nets and allow
communications between points on different, interconnected networks; second, to
develop software protocols and hardware structures for large-scale (1000-phone)
packet voice systems; and third, to greatly reduce the size and cost of packet voice
terminals.

Therefore a major objective of the ISI NSC project is to develop a
second-generation network voice protocol, called NVP-II. The new protocol will
incorporate experience gained with the original NVP, the newer NVCP, and the
latter's extension to allow use of the Packet Speech Measurements Facility (PSMF).
The new protocol will be designed from the outset to operate in an internet
environment and to support the multiplexing required for efficiency in a
large-scale packet voice system. NVP-II will also support packet voice
measurements in a different, better way than the present protocol. The ISI NSC
project has already defined the requirements that NVP-II must meet and is
currently working with the other ARPA NSC contractors in developing the protocol
itself.

The second major objective will be to participate in the satellite-based high
bandwidth packet voice experiment, using a satellite node to be installed at ISI in
FY79. It is anticipated that the high-bandwidth satellite network will be the first
with the capacity to support large-scale packet voice systems with hundreds or
thousands 'of voice terminals. This will provide a major opportunity to develop
high-quality user-oriented conferencing systems. The high bandwidth will also
support initial efforts to develop multimedia communications systems, with
graphics, facsimile, text, data and perhaps even video in addition to voice.

Another objective of the ISI NSC project is to aid in the effort to transfer
packet voice technology out of the laboratory into small, low-cost packet voice
terminals. This task will require careful adaptation of present networking
techniques and protocols if the result is to be usable with many different vocoders
and networks, including an internet environment. ISl's role in this effort will be
to provide protocol, networking, and user interfacing expertise.

PACKET VOICE INTERFACING

One issue that had previously received little attention as a research topic was

the issue of how to interlace vocoders to packet networks. Although several
different packet voice systems had been implemented on: different packet nets, each

NETWORK SECURE COMMUNICATION 50

system's interface to the pocket net was built with a particular network interface
hardware and packet net in mind.

With future requirements for very low cost packet network interfaces as
well as interfaces capable of handling hundreds of voice connections, it became
apparent that there was a need to analyze the hardware and software components
that form a packet voice interface (PVI). The need was not to design the "best"
overall PVI, one which might handle all possible situations, but to analyze the task
into its component parts in order to better understand the problem.

Pequirements

There are a number of requirements the PVI must meet if it is to be as general
as possible. Not all implementations of the PVI will need to meet all these
requirements, but the general structure of the PVI must account for all of them.
These requirements are as follows:

1. l'ocoder-independence. It is anticipated that vocoders ranging from 2.4 kbps
LPC to 64 kbps PCM will be encountered.

2. Network-independence. It must not rely on the characteristics of any one

network.

3. Protocol-independence.

4. Full-duplex. It must support full-duplex communications.

6. Conferencing. It must support multi-user non-shared-air conferencing.

6. Encryption. Encryption of the voice data must be possible within the
structure of the PVI.

7. Multiple vocoders. The structure of the PVI must provide for as many
(possibly different) vocoders as the hardware and network can handle.
This does not mean translation between different types of vocoders,
however.

8. Remote operation. Because the vocoder may not be located at a network
node, provision must be made for the vocoder to be remote via telephone or
other lines. Encryption must still be possible. The tern PVI means
everything between the vocoder and the packet net, including the parts of
it which are remote.

NETWORK SECURE COMMUNICATION 51

9. User interface. Its interface to the user must be simple and easy to use.

10. Economics. The structure should concentrate expensive parts in as few
places as possible and let parts which will be built in quantity be as simple
(and therefore low cost) as possible.

Block Diagram

Figure 4.1 is a block diagram of the PVI. There are three main sections In the
block diagram. Each section is made up of several building blocks, each of which
will be discussed in some detail. The interfaces between them will also be
discussed.

For outgoing data the jobs performed by the sections are,

Section A: Transformation of voice and control information into digital form.

Section B: Assembly of the voice and control data into pieces called "frames".
Conversion of control data into control frames structured
according to a voice protocol.

Section C: Addition of network-specific addresses and headers, possible
multiplexing of several voice frames into larger packets, and
delivery of the packets to one or more networks.

For incoming data each section performs the reverse task.

This division of the task into three major sections greatly enhances
generality, because the interfaces between the sections can then be clearly defined.
Thus, for example, the vocoder/control section can be replaced with a different set
of hardware in order to use a different type of speech compression.

A short summary of the blocks in Fig. 4.1 and their tasks is as follows:

1. Control: Implements the user interface. Transforms the user's signals into
digital control signals, and incoming signals into human engineered
alerting signals.

2. Analyzer: Transforms the analog voice waveform into a digital data stream.

3. Synthesizers Transforms a digital data stream back into an analog voice
waveform.

NETWORK SECURE COMMUNICATION 52

4. Encoder: Quantizes the digital data stream from the analyzer for
transmission using fewer bits.

5. Decoder: Expands the encoded digital data stream back into the form which
the synthesizer uses.

6. Voice Protocol Controller: Converts digital control signals from the user Into
packet-like frames containing NVP-compatible control information and
vice versa.

7. Packetirer: Organizes the digital data stream into packet-sized frames and
adds the NVP header (time stamp, length and silence indication).

8. Depacketizer: Removes the NVP header from incoming frames and produces
a digital data stream with the proper timing.

9. Concentrator: Dynamically concentrates data and control frames into packets
sized and addressed for efficiency and conference control. Performs the
reverse task for incoming packets.

10. Conference Controller: Handles conference control for the concentrator and
the vocoders connected to It.

11. Internet Process: Handles internetting host-to-host protocol issues.

12. Local Network Driver: Adds or removes the local network's header. Handles
any network-specific functions, if necessary.

The reader should note that Section A contains all the knowledge about the
speech compression algorithm, Section B contains all the knowledge about the voice
protocol, and Section C contains all the knowledge about the packet network(s) and
their protocols. This separation is not always strictly true, such as when the voice
data encoding and decoding are done In Section B, but the separation is otherwise
quite complete.

It should also be pointed out that Section B inputs and outputs frames, that is,
roughly packet-sized pieces of data and of control, but without headers for any
specific network. These frames are identical to the packets now gent on the
ARPANET, without the ARPANET leader. The only information now contained in
the ARPANET leader which would have to be put In the frame itself is one bit
telling whether the frame is data or control information. The ARPANET Link field
now carries that information, since data and control are sent on different LINKs.

i

NETWORK SECURE COMMUNICATION 53

Stating it another way, one can say that the voice protocol itself carries no
information about the network, since it is a higher-level protocol than the
network communication protocols. The network-specific information, in the form
of the network's host-host protocol, can be put on the frame before it is sent and
removed afterward. The voice protocol remains the same for all the networks,
since it carries information about the voice communications, not the network.

This organization then permits the frames to be concentrated for efficiency,
to be grouped into larger packets or messages for transmission of several voice
streams going to one place, to be sent over several different networks, etc. The
device which does this is called a concentrator. For a satellite network, the
concentrator might be a large, fast piece of hardware capable of handling many
vocoders. Alternatively, a single microprocessor might do the job in the case where
only one vocoder is interfaced to the PRNET.

NETJ

Colze n o de Protcol

Controlle I SDMUX I

Vocoder ond Control Voice Protocol

i Section A) (Section B)

''0

Conference
Control

Networldng Section C

Fieure 4.1 Packet voice interface block diagram

t

NETWORK SECURE COMMUNICATION 54

PACKET SPEECH MEASUREMENTS

The Packet Speech Measurements Facility (PSMF), located at the Computer
Corporation of America (CCA) in Cambridge, Massachusetts, became operational in
1977. The purpose of the PSMF is to provide a measurement and storage facility
for packet voice. The PSMF uses an extended version of the Network Voice
Conferencing Protocol (NVCP), which allows a user elsewhere on the ARPANET to
establish a connection, store and retrieve packet voice, and request the PSMF to
perform certain measurements on the packet voice data, particularly measurements
of the arrival time patterns of voice data packets.

During the last year the ISI NSC project has helped in the initial testing of the
PSMF, suggested extensions to the PSMF to increase its usefulness, and used it
extensively for packet voice storage and measurement. In addition to the simple
storage of segments of packet voice, ISI has used the PSMF to store and retrieve
"voice messages," using a simple prototype system for the task.

The voice message system uses both a packet voice terminal and an ordinary
text-oriented terminal. The sender types in the destination and subject of the
message just as he would with a normal text message, along with a password and
file name used for access to the voice message. Then the sender dictates the body of
the message using the packet voice equipment. Two items are then generated by
the voice message system- a normal text message sent to the recipient's home.
directory, and a packet voice file at the PSMF. The text message contains the
subject and the file name and the password the recipient needs to retrieve the
packet voice message body.

It should be pointed out that this packet voice message system was designed
primarily as a test and demonstration tool using the PSMF. A large number of
issues remain in the area of voice messages, most important being whether or not
such a system, which is a hybrid of text and voice, is really much more useful than

the usual text message. Ideally, a voice message system would use speech
recognition and voice response to make a system that needed no text input for
destination, etc. The ISI NSC project will be investigating these issues in the
future.

In the area of packet voice measurements, three major experiments were
conducted. The first sought to determine the effect of network load on packet
voice traffic. The second, the most interesting of the three, was designed to
determine how to minimize delay from speaker to listener. The third was to check
out an IMP software parameter that was thought to be a possible bottleneck for
packet voice In the ARPANET.

NETWORK SECURE COMMUNICATION 55

The Effect of ARPANET Traffic on Packet Voice

The first experiment, and by far the most time-consuming, was designed to
investigate the effect of other ARPANET traffic on packet voice transmissions.
Three five-minute voice transmissions were made from ISI to CCA every weekday
for about six weeks, at .PM, 4 PM, and 7 PM PST. These times were chosen as
very likely to exhibit high, moderate, and low cross-country ARPANET traffic,
respectively, under the seemingly universal assumption that there is a peak in
network and processor usage at the end of the working day. Thus 2 PM PST
represents roughly the end of the East Coast work day, 4 PM roughly the end of the
West Coast work day, and 7 PM an evening load on both coasts. Whether or not
these assumptions were exactly correct, it was anticipated that some trends would
appear in the measurements.

The parameters measured were the numbers of missing, out-of-order, and
duplicate packets, and the variance in the relative transit time across the ARPANET.
It was (and still is) only possible to measure relative transit time, because both ends
lack a highly accurate measurement of absolute time.

The results were somewhat surprising. There appeared to be no significant
statistical difference in any of the measured values either with time of the day or
day of the week. This was surprising because packet voice researchers still believe
that other traffic does affect packet voice.

This lack of variation observed in the first experiment was explained in part
by the second experiment. In the second experiment the rate at which voice data
packets was given to the network was varied, and large changes in the delay and its
variance during packet voice data transmissions were observed, especially when
high packet rates were used. The packet voice data generated in this first
experiment was given to the network in large packets at a low rate.

Future experiments in the effect of network loading on packet voice will use
a higher packet rate, at which the network is more variable. It will also be
worthwhile to test packet voice segments made up of several shorter bursts of
voice to see if the five-minute duration of these tests caused variations to average
out.

During the second experiment It was determined that the network handles large packets given to It at a low
ale very well.

NETWORK SECURE COMMUNICATION 56

Minimizing Delay on the ARPANET

The second packet voice measurement was an effort to see how end-to-end
delay of packet voice transmissions from the speaker to the listener can be
minimized. The idea for the experiment was generated by observing packet voice
conversations between ISI and MIT's Lincoln Laboratory in Massachusetts. Voice
transmissions from ISI to Lincoln sounded relatively good at Lincoln, but
transmissions in the opposite direction were very garbled because of out-of-order
and lost packets. Although a packet network can exhibit such nonsymmetric
behavior, the effect seemed too great to fit that explanation. It was noted,
however, that Lincoln generally sent small voice data packets in order to minimize
the time spent assembling the packets, while ISI used somewhat larger packets sent
at a lower rate. A change in the size of voice data packets sent by Lincoln greatly

improved the voice quality heard at ISI. Therefore an experiment was conducted to
determine the effect of packet size on packet voice system performance and
determine if there was an optimum size that minimized overall delay while
maintaining good quality. During the experiment it was found that the primary
factor was not the packet size, but the packet rate (inversely proportional to size in
a fixed-rate system).

Overall delay between speaker and listener includes several factors. There is
a relatively small delay in the LPC algorithm itself. The two major components are
packet assembly time and network transit time. Packet assembly time is the period
between the times the first and last parcels are placed in a packet. Network transit
time varies between some minimum and maximum values, depending on network
conditions. However, a reconstitution delay must be artificially inserted by the
receiver to accommodate the variance in network transit time so that the
reconstructed speech is continuous. Consequently, the effective network transit
time for all packets is the same as that of the slowest packet if all packets are to be
received in time for continuous reproduction.

In order to reduce packet assembly time, it is desirable to make packets as
short as possible. However, since the data rate is constant, sending shorter packets
implies that the packet rate will be higher. A higher packet rate causes more load
on the network, increasing the maximum network transit time; to compensate, the
reconstitution delay must be increased. Since the overall delay is the sum of these
two opposing factors proportional to the packet rate, there should be a packet rate
that minimizes the overall speaker-to-listener delay.

Experiments. Therefore the second major experiment was conducted by ISI
with the cooperation of Lincoln Laboratory to determine the optimal packet rate for
transmissions between the two sites. The two sites are separated by a minimum of

NETWORK SECURE COMMUNICATION 57

eight nodes. Speech packets were transmitted from Lincoln to ISI at various rates.
Each packet contained the time of its transmission, which was recorded at 181 along
with the time of receipt. Since no facility currently exists to accurately determine
the absolute time difference between the clocks at the transmitter and receiver,
only relative transit times could be calculated. (Relative times were sufficient,
however, for these experiments.)

The data rate was 5000 bits per second throughout the experiment. The
following packet rates and corresponding packet sizes were used:

Packet Rate Packet Size
(packets/second) (50-bit parcels/packet)

20.0 5
14.3 7
10.0 10
6.7 15
5.6 18

Data was recorded for several minutes of speech transmission at each of the
packet rates on three different days. For each of the transmissions two graphs
were plotted: The first showed the network transit time for each packet relative to
the minimum transit time versus the time the packet was transmitted. The second
was a histogram of these relative transit times.

Results. Figure 4.2 shows a 30-second segment of a high packet rate (20
packets per second) transmission. Each line represents a single packet, showing the
amount by which its network transit time exceeded the minimum. The spaces
between groups of packets correspond to silence intervals during which no packets
were sent. Note that the variance in network transit time is nearly three seconds.

The improvement in network performance at low packet rates (6.6 packets
per second) can be seen by comparing Fig. 4.3 with Fig. 4.2. The packet lines are
spaced farther apart because the interval between packet transmissions is larger.

Figures 4.4 and 4.5 are histograms of the relative transit times for the
complete transmissions from which the segments in Figs. 4.2 and 4.3 were
extracted. Referring to Fig. 4.4, the minimum effective network transit time to
receive 1007. of the packets in time would be 2.98 seconds plus the actual transit
time of the fastest packet. Similarly, 90. and 807. lines are drawn on the
histogram showing the delay required to receive 90Y. and 80% of the packets in

time. These three values were calculated from each histogram, and the resulta

NETWORK SECURE COMMUNICATION 58

were averaged over the three days' experiments at each packet rate. The averaged
values have been plotted in Fig. 4.6, which shows variance in network transit time
for each packet rate.

The other factors in the overall speaker-to-listener delay, in addition to the
relative network transit time, are packet assembly time and minimum transit time.
The former is easily calculated from the packet size: 10 ms times the number of
parcels in the packet. The latter is that of the fastest packet (it is assumed here that
it is approximately the same for all packet rates). The Justification of this
assumption is twofold: First, since each transmission includes periods of both
speech and silence, some packets from the beginning of speech periods in each
transmission should travel through the network after it has become quiescent
during a silence interval. Second, the most critical resource in the ARPANET
appears to be packet buffers in the packet switches, and each packet is allocated a
full-size buffer regardless of the actual number of bits contained in the packet.
The difference in the amount of time required to serially transmit a packet over the
communication lines for different size packets is small compared to the processing
time required in the packet switches.

A previous study [Z] has shown that a typical minimum transit time on the
ARPANET from Lincoln to ISI is 250 ins. Using this value as the minimum network
transit time, Fig. 4.7 shows the sum of packet assembly time and overall effective
network transit time required to properly receive 100%, 90% and 80% of the
speech packets "in time" at each of the five packet rates. The optimal packet rate
that minimizes the overall speaker-to-listener delay is in the range of 10 packets
per second. The 90. and 80% lines are included to give a better idea of the shape of
the curve; they are not recommended as acceptable reproduction levels.

Conclusion. This experiment determined the optimal packet rate for speech
transmission at the given data rate for one pair of sites on the ARPANET at the time
the experiments were conducted. These qualifications are necessary to emphasize
that there is no single optimum value. Network performance between two closer
sites is better than that measured here. Furthermore, modifications to improve
speech transmission have been made to the ARPANET packet switches since this
experiment was conducted. However, the overall speaker-to-listener delay
increases much more rapidly for packet rates above the optimum value than for
packet rates below the optimum value. Therefore this experiment showed that a
good static choice of packet rate can be made that will accommodate most network
conditions.

NETWORK SECURE COMMUNICATION 69

0 10_ Tie(ec03

0 10 Time (sec) 20 30

Filiture '1.?INetwork transit time relative to minimum
(18 parcels/packet, 5.O packets/second)

NETWORK SECURE COMMUNICATION 60

200

81% Icx 100%

~100

Relative Delay (sec) 23

Fig tre 4.4 Hlistogram of relative transit times
(15 parcels/packet, ZO packets/second)

200

10

-O0

Relative Delay (Sec) 23

Figure 4.5 llistogram of relative transit times
(18 parcels/packet, 6.6 packets/second)

NETWORK SECURE COMMUNICATION 61

* Figure shows percentage of packets
received "in time"._________ _____ ____ ____

0)4

900

02 4 6 8 10 12 14 16 18 20 2
Packets/Second

Figure 4.6 Rlelative delay versus packet rate*

* Figure shows percentage of packets
received "in time".I_ __ I_ __

0 _ _ _ __Or__/0

010

Minimum transit time
Pocket se time

0 2 4 6 8 10 12 14 16 18 20 22
Packets/second

Figure 4.7 Overall delay versus packet rate*

NETWORK SECURE COMMUNICATION 62

"IMP Blocking" Tests

The third experiment was conducted to test a hypothesized bottleneck in
packet voice transmission. It was thought that a bottleneck might occur at the
output of the IMP at the packet voice source. Each ARPANET IMP has eight "logical
channels" that correspond to buffers inside the IMP. However, in order to
minimize the possibility that relatively high rate packet voice might flood the
network and degrade its performance, the type of message used by packet voice
(type 0, subtype 3) was restricted to using no more than two of the eight logical
channels. It was thought that this restriction might be seriously affecting the
performance of packet voice systems, causing longer delays and more out-of-order
and lost packets.

Therefore a test was run by ISI with the cooperation of Lincoln Laboratory
and the Network Control Center (NCC) at BBN. The test was run on different days,
and consisted of the transmission of packet voice segments of about a minute using
a very high packet rate from Lincoln to ISI. The number of allowable logical
channels for packet voice was varied by NCC between one out of eight to eight out
of eight, by patching the code in all ARPANET IMPs during the period between
packet voice transmissions.

It should be noted that ISI used the cooperation of Lincoln during these
experiments rather than the PSMF because measurement of the relative arrival
time of each voice packet was desired rather than the average and other statistical
measurements then implemented at the PSMF.

The first blocking test showed a dramatic decrease in the number of
out-of-order packets when four logical channels were available rather than two,
with little further improvement noted if six or all eight Were available. The
second blocking test was not as dramatic, but did show an improvement. The MCC
watched both tests closely and noted no ill effects on other network traffic.

After the tests were analyzed, the NCC changed the allowable number of
logical channels for packet voice from two to eight, and no effect on other traffic
has been observed.

SOFTWARE

The development of new systems support software has decreased over the last
few years, and only a small amount was done last year, primarily on a
UNIX-compatible file system for EPOS, which is still in progress. Most software
work has been in the support of the various speech applications.

1.

NETWORK SECURE COMMUNICATION 63

Some of IS's software effort went into helping bring up at BBN a real-time
packet voice system based on a PDPi 1/40 and FPS AP-I 20B. The BBN installation
uses the ISl-developed EPOS operating system and the ISI FPS LPC implementation,
with minor modifications. Some minor difficulty resulted from the fact that the
hardware systems are not identical: ISI uses a PDP1 1/45 instead of a PDP 11/40, and
the analog to digital (AD) and digital to analog (D/A) converters at BBN are not
located on the FPS, as they are at ISI. Much of the difficulty was caused by
differences in the TENEX support software, such as linkers, compilers, etc., used by
BBN and those at ISI.

The BBN system is currently up and running, and will be a reliable, readily
available tool to help ISI and others in packet speech development on the ARPANET.

HARDWARE

The primary hardware-related development has been a move into a new
speech/graphics lab and computer room area. The new speech lab is somewhat
larger than the previous lab and has a raised floor, which makes cable routing
easier and neater and cable connections more reliable. The NSC PDP 11/45, FPS
AP- 120B, A/D and D/A converters, and associated hardware are located in a
raised-floor computer room adjacent to the speech/graphics lab. The new lab will
be a significantly better facility for both research and demonstrations. The
co-location with the graphics lab will be very useful for future efforts in
integrated multimedia (i.e., speech and graphics) communications.

In an effort to allow more flexible experimentation with relatively
wide-band CVSD voice data, the four-terminal CVSD vocoder hardware has been
moved from the PDP11/45 to an LSI-11, which is connected to the PDP11/45 via a
DMA interface. This relieves the PDP1 1/45 from handling the interrupts from the
word-at-a-time CVSD vocoder interface, which occurred once per millisecond.
Because of the multiprocess nature of ISI's EPOS PDP1 1/45 operating system, such a
regular, high-rate interrupt is a large load on the PDP 1/45, due to the necessary
context switching. Programming of the LSI- i1 is in progress.

IMPACT

As packet voice technology becomes more mature, its potential impact is
becoming clearer. Although much of the original impetus for the packet voice
effort was its potential value as a relatively low-cost means for secure voice
communication, the inherent efficiency of integrated packet-switched data and
voice networks is becoming more and more apparent.

NETWORK SECURE COMMUNICATION 64

The ARPANET packet voice experiment is already beginning to affect military
plans for future secure voice communications systems, and will greatly influence
plans for command and control systems, particularly when packet-switched
integrated multimedia communications techniques are developed.

At long last the efforts by the ARPA NSC group and others working on
high-quality low-bandwidth speech communications are beginning to have an
effect on the consumer market. Texas Instruments has introduced a low cost ($50)
consumer product using a single-chip LPC synthesizer. The intense competition in
the consumer market is sure to bring down the price of narrowband vocoders, and
thus allow narrowband packet voice communications at a much lower cost.

REFERENCES

[1] Final Report for the Project: Economic Analysis of Integrated DoD Voice and Data
Networks, Network Analysis Corporation, Contract DAHC 15-73-C-0135,
ARPA Order 2286.

(2] Forgie, J. W. and Mc Elwain, C. K., ARPANET Delay Measurements, NSC Note
70, M.I.T. Lincoln Laboratory, July, 1975.

is

65

5. COMMAND AND CONTROL GRAPHICS

Research Staff: Consultant: Research Assistant:
Ilchard L. Bisbey 11 Danny Cohen Richard Shiffman

Dennis Hollingworth
Gertrud Mellstrom Support Staff:
Elaine Thomas Sonderegger Debe Hays

TIlE PROBLEM BEING SOLVED

Effective command and control depends on accurate and timely exchange of
information between command levels and effective presentation of relevant data.
Communication both up and down the command chain is required, as well as
communication with data bases, either static or dynamically updated. Advanced
information processing methods can and should be exploited to manage and
augment information exchange, thereby making it easier for military personnel to
interpret and respond to events.

Effective communication is crucial for real-time operation in crisis, as the 55
hours of voice conferencing during the Mayaguez incident testify. Simultaneous
graphic communication, typically two-dimensional information like maps and
charts, can greatly enhance both the quality and the efficiency of communications,
and provide depth to the information exchange. Furthermore, graphics are
probably the most effective and universal way of communicating spatial
information.

ISI is developing for ARPA a computer-based graphics system for use in a
command and control environment. Early versions of the system are currently in
use at the Naval Ocean System Center (NOSC) as part of the Navy's Advanced
Command and Control Architectural Testbed (ACCAT). ISI is also developing graphic
application programs, including a Situation Display, which is force information
displayed on a geographic background, that demonstrate use of the graphics system.

GOALS AND APPROACH

The principal aim of the effort is the development of a display-
device-independent vector graphics system. "Display-device-independent" means
that graphic application programs can be written without regard to the particular
display device on which the output will ultimately be displayed. The system being

COMMAND AND CONTROL GRAPHICS 66

developed achieves display device independence by providing the application

program with a set of application-independent, device-independent, two-
dimensional vector graphic primitives (Graphics Language [1]) by which pictures
can be described and interacted with at the application level.

The particular graphics model used is based on structuring pictures as sets of
subpictures which are absolute-transformed-segments, as defined by Newman and
Sproull [2]. At the most general level, the application program deals with graphics
in terms of named picture elements, called segments. Segments can be created,
destroyed, merged, made visible or invisible, made touch-sensitive, and
highlighted. Segments themselves are specified in terms of generic graphic
primitives including vectors, arcs, dots, text, and filled sectors and polygons, that
may vary according to color, intensity, type-face, and line-type.

Graphics Language (GL) defines the set of application-independent functions
for performing the above operations. Since several programming environments are
expected to be used in the command and control environment (mainly FORTRAN,
but also LISP, BLISS, MACRO and other languages) GL is defined (and implemented)
in such a way that it can be easily used by application programs written in any of
them.

The binding of the application program to a particular display device is
deferred until program execution time, when the generic graphics primitives are
mapped by the system into specific operations and display modes appropriate to the
device selected. The quality of the displayed picture resulting from user
application requests is limited only by the capability of the display device.

The second significant aim is that the graphics system be distributable across
multiple host computers interconnected by a communications network (such as the
ARPANET). This allows the graphics display device to be located away from the
graphics application program; it also allows the computational load introduced by
the graphics system to be distributed across multiple processors, balanced to the
computational resources and communications bandwidth available. The graphics
system achieves distributability by virtue of its modular design and
implementation, i.e., the system consists of a series of isolatable functions that
communicate via a common communications mechanism (see [5] for more details).

The design separates the issue of system functionality from communications.
In other words, the functionality of the system does not depend on the physical
processor on which a given function resides during a graphics session. The
physical location of graphic functions (as well as the display device) affect
performance Issues only; they have no effect whatsoever on the application
program. Moreover, any intraprocess/interprocessor communications mechanism

COMMAND AND CONTROL GRAPHICS 67

mignht be used for communications between functions of the graphics system

(including telephone, radio, or digital network/internetwork links). As suggested

by l.F. Sproull in "Network Graphics Isn't Networking" [3], a graphics system used

on a network does not have to address networking issues, but only device

independence.

Modular organization of the graphics system has several benefits in addition

to distributability. It allows the system to be easily extended to support other

application languages and display device types. The former is accomplished by

replacing an application interface component by one which interfaces to the new

language, and the latter by replacing the component that generates device orders.

Such replacement has no effect whatsoever on the application programs or the

fashion in which application programs use the graphics system and graphics

language.

Modularity also allows new graphic functions to be easily added to the

capabilities of the basic system. The architecture supports a single-

terminal-to-single-application graphics environment. Additional graphic

functions may be added to support more complicated configurations, including

multiple programs concurrently connected to a single terminal and a single

application program simultaneously generating graphics output for and accepting

input from multiple (possibly dissimilar) display devices.

PROGRESS

Graphics System

In January 1977, ISI delivered a nondistributable (Level 1) version of the

graphics system. This initial version supported the Tektronix 40XX series display

and was later extended to support the Genisco GCT-3000 raster-scan, bit-map color

graphics display. Extensions were made to the Level 1 system during this

reporting period to support an additional application language, several additional

graphics display device types, and an additional connection protocol.

Three documents were written describing the graphics language [1], the

internal graphics protocol [4], and the general system architecture [5]. Work

began on implementation of the distributable (Level 2) version of the graphics

system.

k .7

COMMAND AND CONTROL GRAPHICS 68

Situation Display

Concurrent with the development of the graphics system, ISI is developing
several command and control applications to demonstrate various capabilities of the
graphics system. One of these is Situation Display, a natural language C2
information retrieval system with graphic output. Situation Display is a
cooperative effort between ISI and SRI International. The natural language and data
retrieval capability is provided by SRI's LADDER (Language Access to Distributed
Data with Error Recovery) [6] while the graphics presentation is controlled by ISI's
SDGS (Situation Display Graphics Subsystem--which in turn makes use of the
graphics system developed at IS1). The first version of Situation Display was
delivered to NOSC in June 1977. During this reporting period, Situation Display
was extended to provide additional display capability including highlighting,
solective display and amplification of ship information, and locally retained maps.
The facing page shows examples of Situation Display output. A document was
written describing the system architecture [7].

IMPACT

The principal impact of this work is in developing a graphics system
architecture that accommodates system decentralization and distributed graphics.
Such a system architecture will facilitate graphics/user environments of widely
varied display capabilities, storage capabilities, and processing capabilities. An
example of such a system Is a ship-based graphics system that must interact with
and possibly supplement one or more land-based graphics systems associated with
large computer resources. The graphics system is intended to provide a sufficiently
rich graphics capability to support a wide variety of applications and terminal
types.

Figure 1. Typical situation display outputs using Graphics System.

COMMAND AND CONTROL GRAPHICS 69

REFERENCES

[1] Graphics Language, USC/Information Sciences Institute, December 1977.

[2] Newman, W.M., and Sproull, R.F., Principles of Interactive Computer Graphics,

McGraw-Hill Book Co., Inc., New York, 1973.

[3] Sproull, R.F., "Network Graphics Isn't Networking," Proceedings of the

Berkeley Workshop on Distributed Data Management and Computer Networks, May

25-26, 1976, Lawrence Berkeley Laboratory, University of California.

[4] Graphics Protocol, Information Sciences Institute, December 1977.

[5] Bisbey II, R., Hollingworth, D., A Distributable, Device-Independent Vector

Graphics System for the Military Command and Control Environment,

USC/Information Sciences Institute, April 1978.

[6] Sacerdoti, E., Mechanical Intelligence: Research and Applications, Final Technical

Report April 12, 1976-October 9, 1977, SRI International, December 1977.

[7] Bisbey II, B., Hollingworth, D., Situation Display: A Command and Control

Graphics Application, USC/Information Sciences Institute, April 1978.

Z7- 777

71

6. AUTOPSY: SYSTEM FOR (SEMI-) AUTOMATIC

TRANSLATION OF OLD PROGRAMS

Research Staff: Research Assistant: Consultants:
Stephen D. Crocker Jeff Cook David Martin
Peter Alfvin Hanan Samet

Support Staff:
Pamela Kaine

MOTIVATION

The Defense Department will soon adopt a new programming language, Ada,
which will be the standard language for embedded computer systems. This new

standard is expected to help reduce the cost of development and to improve the

reliability of the resultant software. The new language design will be

accompanied by the development of new tools to aid programmers in using it. In
addition to the obviously necessary compilers for each machine, we can also expect
specialized editors, debugging systems, verification systems, and the like. In short,
the language will be supported far better than any language has been to date.

One of the problems that has not been addressed during the development of

the new language is what to do with all of the programs written in the old

languages, such as the Navy's CMS-2, the Air Force's JOVIAL and the Army's

TACPOL, among many others. Many of the programs written in these languages can
remain as they are and slowly fade from use. Many others, however, will need to
be updated to meet changing requirements or to run on new hardware.

While it may be possible to maintain these programs in their present form,

much would be gained if they could be translated into Ada. As mentioned above,
the support mechanisms for Ada are likely to be far superior to those now in use for

existing languages. Moreover, for new computers, it is unlikely that compilers for

old languages will exist at all.

This project addresses the problem of program translation.

Q t. AtY,,'& ' r €, - t i L -

!-

PpJ

AUTOPSY 72

OVERVIEW

The most straightforward idea for translating programs is to build a complete
transducer that reads programs in the old language and translates each construct or
sets of constructs in the old language into one or more corresponding constructs in
the new language. While this approach may work in some cases, it often fails
when the new language is not a complete superset of the old language. In the
present case, we do not know the precise definition of Ada, but we know enough to
be sure that there is no real possibility of translating Into Ada arbitrary programs
written in the several old languages.

The Autopsy project is a research effort that combines automatic translation
techniques with an interactive system to provide the human manager complete
control over the translation process. The human may ask the system to attempt
translation of all or some of an old program. The human may also control the
translation more intimately by specifying that a particular transformation be
applied or by supplying the replacement code himself.

The proposed system will evolve to become more and more automatic, but one
essential aspect of the system will be fixed at the beginning: the complete history
of the translation of an old program into a new one will be recorded and be
accessible for inspection and/or modification at any time.

This research is being carried out in three major epochs. Epoch one is devoted
to the development of a basic system for translating from one old language to one
new language. Epoch two will be devoted to a sophisticated version of the same
system. Epoch three will be devoted to the automatic development of translation
systems.

The primary purpose of the epoch one system is to demonstrate the utility of
our approach and to provide a firm design for the development of a sophisticated
system. Only two fundamental mechanisms are being included In this basic
system. Algorithms for automatically translating constructs in the old language
into corresponding constructs in the new language will be written wherever
possible. In the absence of automatic algorithms, the user will have access to an
editor to simply write the replacement code in the new language. As noted above,
however, an early component of this system will be a complete recording facility.
The complete history of the transformation of a program in the old language into
one in the new language will always be available.

The epoch two system is intended for use by a small, selected set of
programmers in a military laboratory. In addition to the capabilities of the epoch
one system, the epoch two system will have facilities for pattern-directed

AUTOPSY 73

transformations to be invoked under a user's control and for formal verification of
some types of replacement of code. By this time, the system will be documented
and easy to use. Prettyprinting routines for the code in the new language and other
bookkeeping aids will be provided to make it easy for the user to understand the
structure of programs in the new language and how the new program is related to
the old. Of course, the system is not designed to invent algorithms or provide clean
code in the new laneuage when the old code was convoluted. But the system will
attempt to retain what structure is available and provide some tools for cleaning up
the code by hand. W, envision that a serious test of the epoch two system should
take place during the third research year, with support from our staff. During that
year, we will also refine the system and enhance its ability to implement
context-sensitive transformations.

Our long-term goal is to automate the production of translation systems.
Using the epoch two system as a model, we will examine the algorithms developed
by hand and see what it would take to produce these algorithms automatically,
given formal descriptions of the old and new languages. We expect to apply
whatever techniques we develop towards the production of a translation system
for an additional input language, i.e., one different from the language input to the
epoch one and two systems.

SYSTEM STRUCTURE

The translation system is based on the concept of a common internal
representation of programs. Old source programs will be translated into this format
and new source programs generated from it. All analysis and transformations,
whether system- or user-directed, will be performed on this internal
representation. In addition to providing a rich operating environment, this
approach allows us to present a uniform description of program translation for any
pair of old and new languages supported by the system.

Choosing the internal representation is obviously a critical task. If the old
and new languages are quite different (e.g., FORTRAN and LISP)the task might be
close to impossible. However, we expect that this system will be used only when
the old and new languages are closely related. In such cases, we expect to be able to
find quite reasonable internal intermediate representations.

The system will be composed of three subsystems (Figure 6.1). The first
subsystem will be responsible for inputting the old source programs and translating
them into the internal format. The second subsystem will perform any necessary
transformation on the program. And the third subsystem will output the new
source programs. Each of these subsystems will be subject to increasing degrees of
automation as the project progreses.

AUTOPSY 74

Old Old -Input

SPurar, Mapper Subsystem
ProCram Tro

Old New Transformation
AL{ ra c Sysem Abstract Subsystem
Ilrocram Pro roram

til Now Un- Now Output

Prpp Pa are Source Subsystem
Trea Program

Figure 6.1

Input Subsystem

This subsystem consists of two processes, shown as octagons. The first

process, the J'ars;er, reads the old source program and generates a parse tree. This
parse tree will be uniquely determined (assuming no syntactic ambiguity) by the
IINF of the source language. The derived parse tree is then translated into an
abstract form.

__--Ii ~ ~ I

AUTOPSY 75

The terms "abstract form," "abstract syntax," and "abstract program" have
rocCeived widespread use, with some resultant confusion. When we speak of the
"abstract form" of a projeram, we are referring to that internal format which most
conveniently represents that program, where "convenience" is determined by the
operations we need to perform. While this format will be similar to the derived
parse tree, the diflerences are significant enoulh to merit a distinction. Fol
instance:

In the BNF for most concrete languages, an operator precedence is defined
through a hierarchical set of production rules. This hierarchy results in a
great deal of complexity In the parse tree representation of expressions
involving these operators. A simple integer might be represented as an
instance of an expression, which was a sum, which was a product, which
was a term, which was (finally) the integer Itself. Once a program has
been parsed, this structure is no longer useful. Expressions can be
represented in a straightforward prefix notation, requiring no additional
structure.

Another common feature of concrete languages is that they frequently
allow defaults. In the case of an iterative loop construct, such as "for i
from J to k by m do s," the "increment" clause ("by m" in this example) is
often optional, in which case an increment of (say) 1 is assumed. In order
that the semantic processing of these loops might be somewhat simplified,
the default Increment would be provided in the abstract form.

Another reason for utilizing an abstract form of the source program is to
provide a normalized representation for multiple source languages. It is
assumed that the source languages will have many features in common.
In order that equivalent constructs in old languages need not be
individually treated, a common representation for these constructs must
be defined. The abstract form, then, would support the union of the
constructs supported by the old source languages.

Finally, In order that the transformations on the source languages be
performed within a single representation, the abstract form must be
expanded to include any constructs in the new source languages which
ar to be utilized in the transformation process. This will simplify the
system by allowing us to separate the problem of generating the
appropriate new language constructs from the problem of generating the
external representation of those constructs.

An example of the above processing is given in Figure 6.2 on the following
page.

AUTOPSY 76

1. <Exp> :- <Factor>
2. <Exp> :- <Factor> <AddOp> <Exp>
3. <AddOp> :- +
4. <AddOp> := -
S. <Factor> :. <Term>
6. <Factor> :- <Term> <MultOp> <Factor>

7. <Multop> : *

8. <MultOp> :- /
9. <Term> :. <Variable>
10. <Term> :- <Integer>
11. <Term> :- I <Exp>)

12. <Assign> :- <Variable> <Exp>

Parse Tree for "AB+A*6"

(P12 A (P2 (PS (P9 B))
(P3)

(PI (P6 (P9 A)
(P7)
(PS (Pie 6}))))))

Abstract Form

(Assign A (Add B (Multiply A 6)))

Figure 6.2. Sample BNF for Assignment Statement

Transformation Subsystem

The purpose of this subsystem is to translate the abstract program into a form
that can be represented in the new source language. More specifically, all
constructs in the abstract program that are not available in the new language must
be translated into equivalent available constructs. In addition, the user may Want
to perform an otherwise unnecessary transformation for the purpose of readability,
speed, or other considerations. While the organization of processes within this
subsystem is not clear at this time, certain ideas stand out as being critical:

The system should support both user-supplied and system-upplid
translations. As the system evolves, the system can take on more and more

AUTOPSY 77

of the burden of translation, but there will always be a need to support
user modifications.

User translations may take the form of editing commands or the
application of user-generated procedures to the abstract program. In each
case, the user's input will be recorded and "back-up" facilities will be
provided.

System translations will consist of a library of translations organized by
language construct. That is, each "offending" construct in the old
language might have one or more interpretations in terms of constructs in
the new language. Many times these interpretations will be partial, and
success in translation will depend on the individual program. If
translation depends on certain assumptions about the behavior of a
particular program, the user could be queried and his answer recorded.

The history of user and system translations should be recorded in such a
way that it can be reused as input to the system. In addition, an easily
readable description of the translation should be obtainable from this
record and a copy of the program.

For editing and documentation purposes, a concrete form of the abstract
language will be provided.

Output Subsystem

This subsystem is the converse of the input subsystem. The abstract program
is translated into a parse tree for the new source language. The reverse of the
operations discussed above for the input subsystem must be performed. Then the
parse tree is translated, on the basis of the BNF, into the new source language.
There are some additional issues involved in this unparsing process involving
spacing, comments, etc., but these are not felt to be major issues.

STRATEGY FOR EPOCP I

We intend to build our system from within the INTERLISP environment,
making extensive use of available INTERLISP tools whenever possible. Not only
does INTERLISP provide the list processing capabilities appropriate for this task, but
it also gives us a firm foundation from which we can generate a customized
system. In addition, some related work in this area has been carried out within
INTERLISP resulting in an auxiliary collection of tools from which we can select.

i-i

AUTOPSY 78

A critical component of the system will be the intermediate, abstract form.
The obvious LISP datatype in which to represent this form is the s-expression.
However, s-expressions are unwieldly from a user's point of view. Fortunately,
INTE LISP provides a facility (CLISP/DWIM) which allows for table-driven
transformations from s-expressions into more readable forms (e.g., prefix-infix
transformation). Consequently, we will be able to define a tractable representation
of our intermediate language for the user to work with while retaining the desired
internal format. This external representation can also be be used for
documentation purposes, so that any program transformations can be expressed at
the level at which they were performed (the abstract level) rather than having to
translate the transformations into operations on either the old or new languages.

The processes required in the input subsystem can be easily developed from
existing tools. A program has been written [Wile] to generate INTERLISP parsers
from a BNF-like input specification. Though some modifications to the program
may be required for production use, it does provide us with a means of quickly
generating parsers for arbitrary input languages. The INTERLISP input/output
facilities allow straightforward specification of lexical analyzers for use with
these parsers. In addition, the extended BNF input notation provides a means of
specifying translations to the parse tree during the parsing subsystem. Making use
of this mechanism, we can implement the post-parse translations in a
straightforward and efficient manner. The above method of lexical analysis,
parsing, and translation has already been used successfully in our work with ISPS.

The transformations at this point will be either hand-coded system functions
or user-supplied commands to the editor. The system functions will hopefully be
able to translate fairly completely most of the constructs in the old language, but
there will undoubtedly be some shortcomings. No general library of
transformations will be supplied.

Another responsibility of the transformation subsystem is to record the user's
actions. The INTERLISP "history list" feature provides an initial model for this
process. Related to the history list is the INTERLISP "programmer's assistant"
which supports the concept of allowing the user to inspect, retry or undo the
effects of previous commands. This safe and flexible environment encourages
experimentation with the system and generally increases productivity. Another
MlS' feature, TRANSOR, is concerned with performing translations from one LISP
dialect to another. It provides a facility to specify transformations as a series of
commands to the INTERLISP editor on a construct-by-construct basis. In addition to
the transformed expression, it generates a list of unresolved program areas. This
process is identical to the process we are attempting to support.

AUTOPSY 79

The processes in the output subsystem are concerned with the generative use
of grammars rather than their use for parsing purposes. Because we know of no
available tools similar to the parser generator mentioned for the input subsystem,
we will have to either create such a tool or write the processes by hand. The main
issues here revolve around the loss of information generally associated with lexical
analyzers. Program comments, which are usually discarded during parsing, must
be retained. Program spacing and indentation will have to be regenerated. This
process corresponds to the INTERLISP "prettyprint" feature and is a reasonable
approach to take.

STRATEGY FOR EPOCH 2

The key issues addressed in this epoch are user-directed transformations and
formal verification. Source-to-source transformation issues have been studied by
several authors (Balzer, Standish2]. Balzer is concerned with generating efficient
implementations from abstract representations of programs through successive
application of catalogued transformations. Standish has published a collection of
transformations (Standish1] and implemented an interactive production system.
We are concerned, at least initially, with replacing those specific constructs in the
abstract program not supported in the new source language. As such, our problems
are a subset of those addressed by the previous work and we should be able to make
use of the transformations and transformation techniques already developed. It
may also turn out that general transformations are required in order to resolve
space and efficiency considerations, in which case the previous work would be
more fully applicable.

Formal verification techniques would be utilized by the user in Justifying
the translations or substitutions he supplies himself. The verification proof would
become a part of the record of the user's activities and would be required to
conform to the same rules regarding reusability and documentation as the user's
translations.

Verification is a very complex problem, of course, and we do not intend to
guarantee that we can develop tools to support verification of arbitrary
replacement of one program by another. However, recent work by Samet (Samet 1,
Sainet2, Samet3] suggests that it is possible to verify the equivalence of two
programs automatically if the two programs use equivalent data structures and
progress through equivalent control paths. Samet's techniques would not apply,
for example, to showing that a quicksort algorithm is equivalent to a bubble sort.
However, in the program translation problem, the primary goal is to convert the
same algorithm to a new language. Changing the basic data structures or
algorithms is really a separate problem. We recognize, of course, that there is

AUTOPSY 80

strong motivation to improve a program while it is being converted, and we expect
that our proposed system will provide a useful general framework for recording

the changes and cataloging the versions of the program, but we have no plans for

supporting verification of these improvements beyond the simple conversion of

algorithms from the old language into the new.

The system will be documented for use by selected outside experts.

STRATEGY FOR EPOCH 3

Eventually, we would like to automate the generation of translation systems,

based on formal definitions of the old and new languages. There is no accepted best

method of formal definition of a programming language, but some experience has

ben accumulated. The syntax definition is fairly easy: some form of BNF is almost

always used. The semantic definition is much more complex. We have been

experimenting with the use of attribute grammars to formally specify ISPS--a

machine description language--and have been achieving moderate success. We are

not yet ready to take a firm position on our preferred method of language

definition, but consider this to be one of the research issues to be addressed. To be

clear what the bounds of the research problem are, we summarize the desired

result:

We need a formalism for describing the syntax and semantics of a
programming language. This formalism must be adequate for describing
Ada and the most useful of the old languages--probably CMS-? and
TACPOL. The formalism must be readable by humans and present the
information about the language in a reasonably intuitive format. The
formalism must also be readable by a machine and should be amenable to
the translator generator. To keep the problem within bounds, the
formalism need not handle every perverse kind of programming
language. If need be, the formalism might also put a boundary around
particularly difficult constructs In otherwise tractable languages.

Given some means of formally specifying the syntax and semantics of the

programming languages, we need some means of generating a translator. Two
means are available. One is to build an automatic translator generator. The other is

to provide a means for the user to specify the translator. We intend to pursue both

paths. A translator generator will be attempted which examines the definitions of

the old and new programming languages and looks for an algorithm for translating

constructs in the old language into constructs in the new language. In general, this

translator generator will have only partial success and will leave part of the task to

the user.

AUTOPSY 81

The user will then have the option of specifying how to translate some of the
constructs in the old language into constructs in the new language. Of course,
some assurance is desired that the translation proposed by the user preserves the
functionality of the program, and we expect to provide some means of testing the
appropriateness of the user-supplied scheme.

Just as there may be some question about the adequacy of the user-supplied
translation schemes, there may also be question about the system-supplied scheme.
Partly to provide high visibility to the heuristics employed and partly to provide an
easy path to their improvement, we expect that the translator generator will be
written in a specialized and readable language that the user will have direct access
to. Moreover, the translation schemes proposed by the system will be subject to the
same type of testing and verification as the user-supplied translation schemes.

PI F SF.NT STATUS

An extended BNF grammar for CMS-2M, derived from the grammar in the
AN/UYK-20 CMS-2M compiler specification, has been written and input to Wile's
parser generator program GOP [WileJ, to produce a CMS-2M parser. The parse
record corresponding to a CMS-ZM program input to this parser is suitable for
syntax-directed semantic computations or translations of CMS-2M programs. In
addition, realizing that a conventional context-free syntactic description (rather
than extended 13NF) of CMS-2M may be better suited to general syntax-directed
semantic specification schemes such as attribute grammars [Knuth], a program for
converting extended BNF grammars to equivalent context-free grammars has been
written.

Attribute grammars (AGs) [Knuth] are a useful and powerful means for
specification of machine-implementable syntax-directed semantics. An AG consists
of an underlying context-free syntax specification and an accompanying semantic
'.;l €ificatlon k'eyed to the syntax. A choice of semantic domain, i.e., the objects
cmtprling the semantic definitions, is inherent in this semantic definition. AGs
can be used to define programming language translators or more abstract semantic
d,,f intions such as denotational semantics [Stoy].

A comprehensive system for the definition and machine implementation of
AGs has been desiened and partially implemented. Those portions of the system
that have been implemented are an input processor and a circularity tester. The
circularity tester is necessary to determine that the set of attribute equations keyed
to the syntax of a language do not define a circular, and hence unsatisfiable, set of
computations.

AUTOPSY 82

Algorithms have been developed, but not implemented, for attribute
evaluation and conversion of AGs to purely synthesized form. The algorithm for
automatically converting an AG specification into a simple parse-tree-traversing
pushdown automaton for evaluating the attributes on a given parse tree of that AG
has been designed and proven correct. The algorithm to convert an AG to purely
synthesized form is based on a symbolic-execution variant of the attribute
evaluation algorithm. It converts the original AG into an equivalent one which
contains only synthesized attributes. Synthesized attributes are ones computed
only from lower nodes and are distinct from inherited attributes which are
computed from adjacent or higher nodes. A purely synthesized AG is trivially
non-circular, hence the conversion process requires a non-circular AG as input.

REFERENCES

[11alzer] Balzer, R., N. Goldman, and D. Wile, "On the Transformational
Implementation Approach to Programming," 2nd International Software
Engineering Conference, October 1976, San Franciscc, pp. 337.

[Knuth] Knuth, D. E., "Semantics of Context-Free Languages," Math Systems Theory
Z: 1968, 127-145.

[Sametl] Samet, H., Automatically Proving the Correctness of Translations!
Involving Optimized Code, Ph.D. Thesis, Stanford Artificial Intelligence
Project Memo AIM-259, Computer Science Department, Stanford University,
1975.

[Samet2] Samet, If., "Compiler Testing via Symbolic Interpretation," Proceedings of
the ACM .29th Annual Conference, 1976, pp. 492-497.

[Samet3] Samet, H., "A Normal Form for Compiler Testing," Proceedings of the
Symposium on Artificial Intelligence and Programming Languages, 1977, pp.
155- 16Z.

[Standishl] Standish, T., D. Harriman, D. Kibler, and J. Neighbors, The Irvine
Program Transformation Catalogue, Computer Science Department, University of
California at Irvine, January 1976.

[StandishZ] Standish, T., D. Kibler, and J. Neighbors, "Improving and Refining
Programs by Program Manipulation," Proceedings of the 1976 ACM National
Conference, Houston, Texas, October 1976, pp. 509-616.

[Stoy] Stoy, J. E., Denotational Semantics, MIT Press, 1977.

[Wile] Wile, D., "Generator Of Parsers," Internal Memorandum, Information
Sciences Institute, November 1976.

83

7. PROGRAMMING RESEARCH INSTRUMENT

and

MULTIPLE MICROPROCESSOR EMULATION

RezqarCh Sta ff: Research filsitanis: Support Staff:

Louis Gallenson Peter Liao Pamela Kaine
Steve Crocker William Morgart Raymond L. Mason
Peter Alfvin Sarma Sastry
Alvin Cooperband
Joel Goldberg

BACKGROUND

The PlM (Programming Research Instrument) project, initiated in 1972,
provides a flexible tool for-research in computer architecture. The PRIM system is

built around a high-speed microprogrammable computer used for emulation slaved
to a general-purpose time-sharing system. The system is designed to accommodate
many concurrent users and is also available to remote users over the ARPANET.

The Initial PRIM hardware and software were operational in May 1974 with
the ability for remote users to compile and debug microcode. The basic PRIM

system, which emphasizes generalized software development tools (with some

specific tools), became operational in March 1976.

The original 1IIIM system uses a Standard Computer Corporation MLP-900 for
the high-speed execution. Only one copy of this hardware was ever built.
Recently, a number of groups, particularly Rome Air Development Center (RADC)
and Naval Ocean Systems Center (NOSC), have procured Nanodata QM-I's for

emulation work. In keeping with our philosophy that such machines should be
attached to general-purpose time-sharing systems, we recommended that these
QM- I's be operated in a PRIM-type configuration. The result has been an extension
of the PIM development project to produce a QM-1-based PRIM system called
WIlM.

At the same time, interest in architecture research has expanded to include

multiple processor systems. Of particular Interest are closely coupled assemblies of
substantial numbers (20 to 50) of small machines. One of the classic problems in

PROGRAMMING RESEARCH INSTRUMENT 84

emulating such an assembly of machines is controlling the time lost In switching
contexts from emulation of one processor to another. If the machines are only
loosely coupled, it is possible to run each emulation for a fairly long time before
switching contexts. However, for closely coupled systems, context-switching may
be required as often as every (emulated) instruction. In examining the capabilities
of the QM- 1, it appears that enough control store is available to hold the microcode
and working registers for a large number of machines. If so, the context switching
time should be reducible to a very small number of microinstructions and the
overhead for running a closely-coupled set of emulations kept to a reasonable
fraction of the total execution time. An extension to the PRIM emulation system to
handle multiple emulations is now under way. This part of the effort is named
Multiple Microprocessor Emulation (MMPE).

SYSTEM DESCRIPTION

I)etailed descriptions of the PRIM system are available in the previous annual
report [1] and in reference documentation [Z], [5]. [6]. The system architecture is
briefly described here and illustrated in Fig. 7. 1. The PRIM system is built in three
levels upon a base consisting of the MLP-900 microprogrammable processor and the
TFNEX timesharing system. First is the operating system level of PRIM, consisting of
the hardware and software that support shared access to the MLP-900 from TENEX
processes. Second is the user level, the PRIM system proper, which provides
interactive access. to a user at a terminal. And third is the tool level, consisting of the
set of installed emulation tools, each providing its users with a complete target
environment. The user level is for both the emulator developer and the target
machine programmer.

The tool level of PRIM consists of the set of completed emulation tools
available to target machine programmers plus an MLP-900 tool available to
emulator developers. A completed emulation tool consists of an emulator (pure
MIP-900 microcode), a table file describing that tool to PRIM, and a dummy TENEX
process by means of which PRIM initializes everything for this target machine.
Thr emulated machine produces better user debugging facilities and greater
flexibility in system configuration than the original machine, at the expense of
execution speed, while producing bit-for-bit compatible results on all levels of
execution. Currently, PRIM also provides the AN/UYK-20 [4], Univac U1050 [5],
and the Intel 8080 as completed emulation tools. The MLP-900 tool consists of the
GPM compiler and a table file describing the MLP-900.

PtOGRAMMING RESEARCH INSTRUMENT 85

PDP-10 MLP-900

* :1 MP * 1/0OBUS
S"Tool Driver - -*

Tal :es b v Emulato :

* Paoer nt

Q Target vertual Memory

KEY:

[]Base system

,' J Operating-system-level components

[]User-levol components

[]Tool-level components

SData Path

-- Control path

Figure 7.1 Architecture of PRIM

From the user's point of view, the PRIM system can be in one of three states:
the PRIM exec, the PRIM debugger, or the emulated target machine has control.
The user's initial interface to the PRIM system is with the PRIM exec. From there
he can pass control either to the PRIM debugger or directly to the target machine.
From the PRIM debugger, he can pass control either back to the PRIM exec or
directly to the target machine. Once control is passed to the target machine, it stays
there until target execution stops or is stopped by user intervention.

DOCUMENTATION

User documentation has been prepared for each of the existing PRIM tools. In
user guides for the specific machine tools (UYK-20, U 1060, and 8080), we assume
the reader is a familiar user of the specified computer system but requires
instructions for interactive code generation and debugging. For the naive

WIL

PROGRAMMING RESEARCH INSTRUMENT 86

programmer a tutorial section provides detailed examples of the utility and power
of the PRIM tool. A comprehensive software manual containing
machine-independent information has been prepared for the general PRIM user.
The PRIM System: Tool Builder's Manual has been prepared for users interested in
writing new emulators.

CURRENT PRIM ACTIVITY (MLP-900 System)

NOSCs System Design Laboratory (SDL) is currently introducing PRIM tools to
user communities within the Navy. The charter of SDL is to support the design and
development of naval systems employing computers by providing a cohesive set of
tools with a common user interface. The AN/UYK-20 [7] is the standard
minicomputer for naval systems and the PRIM UYK-20 is an important part of SDL's
capability. During FY78 the PRIM UYK-20 was used by seven different Navy
development projects with an approximate total of 100 hours of MLP-900 CPU
time. These figures are impressive when considering that this is the first year SDL
offered this service. Based on initial user reactions to PRIM UYK-20, we expect
continued growth in the user community and increased usage by each of the
development projects during FY79.

In response to user request the UYK-20 tool has been enhanced to include
additional IO devices. These include: a 188C channel interface which provides an
asynchronous serial data path, a generalized NTDS interface to allow users to add
their own versions of emulated I/O devices; and the addition of Baudot code devices
(TTY). It appears that Navy systems utilizing the UYK-20 are primarily concerned
with unique I/O devices and the demand for new device emulations will continue.
This requirement is satisfied with minimum implementation effort and is being
performed as part of the maintenance task. The PRIM project is essentially
completed and ISI will continue to be responsible for the system maintenance.

The PRIM project is also interacting with a research group at the Dahgren
Laboratory of the Naval Surface Weapons Center (NSWC) in developing
communication protocols for naval tactical systems. The research requires a
flexibly configured UYK-ZO on the ARPANET. Specification and a functional
design for the intercomputer protocol have been completed. We are awaiting the
completion of the Dahigren emulation facility interface to the ARPANET.

Since the completion of the basic PRIM system we have concentrated on
making this technology available to military development projects expressing an
interest and need. We have worked closely with the SDL at NOSC, with
AFDSDCILGSFE at Gunter AFS, and with the ARPA-sponsored National Software
Works (NSW). For each of these development efforts PRIM has been able to provide

t PROGRAMMING RESEARCH INSTRUMENT 87

software tools compatible with the objectives of the user group. This effort
entailed tuning the system, adding additional capabilities, and writing
documentation to satisfy the stated user needs.

The success of PRIM as a development tool has generated sufficient interest
that we are currently duplicating this environment with current off-the-shelf
computer systems for installation in two military laboratories. The new PRIM is
being built on a base of the DEC TOPS-20 timesharing System and the Nanodata
OM-1 microprogrammable processor. The new systems are scheduled for
installation at RADC and NOSC by October 1979.

QPRIM

A proposal to RADC consisting of a description of the newly proposed PRIM
system has been written and accepted. The new system (QPRIM) utilizes recently
purchased RADC TOPS-20 and QM-1 computer systems. In addition to duplicating
the existing PRIM capabilities, QPRIM also allows a QM-1 stand-alone mode of
operation. OPRIM provides RADC an enhanced emulation facility (and NSW tools)
without compromising any of the stand-alone capabilities provided by Nanodata.
The completion of QPRIM successfully concludes the remaining original goal of the
PRIM project: to provide a reproducible system that allows easy transfer of this
technology.

NOSC is participating in this development effort by providing ISI with their
recently purchased QM-1. The NOSC QM-1 was installed at ISI in September 1978
and will be available for the completion of QPRIM development effort. This system
will eventually be installed at NOSC, coupled to their existing TOPS-2O system, for
a second copy of a OPRIM system.

The new components of the OPRIM system are the microvisor, driver and
hardware interface. The microvisor implementation includes a modified
micro-instruction set unique to QPRIM users. This new instruction set includes
firmware paging logic compatible with TENEX and TOPS-20 paging mechanisms.
The modified instruction set is compatible with use'r-level MULTI (Nanodata
standard OM-I instructions) and is being coordinated with the SMITE compiler
activity at TRW (a higher level language for writing microcode for QM-1). The
driver is being developed by the ISI system group for operation with TOPS-20. The
PRIM system software is compatible with this new environment.

The implementation of QPRIM must be performed with no interference with
TENEX users and a minimum of stand-alone TENEX time (the systems are currently
scheduled for seven hours of preventive maintenance per week). Therefore

PROGRAMMING RESEARCH INSTRUMENT 88

caution and exhaustive testing must prevail throughout the phases of
development. The initial mode of operation is a stand-alone QM-1 remotely
operated via TENEX. The memory interface will be tested with a spare DEC MElO
memory and the I/0 bus interface will be tested with the aid of an existing I/O bus
emulator. We can therefore develop and test the interfaces, the new Nanocode,
microcode, and microvisor with TENEX user mode software.

The second phase is a stand-alone QPRIM environment which completes the
checkout of the memory and I/0 bus Interface and microvisors. The QM-1 is
directly coupled to the TENEX memory and I1/0 bus and is exercised with existing
user mode software, with appropriate support from the TENEX monitor. A basic
UYK-20 emulator is being developed for a test vehicle. The final phase utilizes
TOPS-20 (ISIE) in place of TENEX system to continue to exercise QPRIM. A QM-1
driver, embedded in TOPS-20 monitor system, is the only new component. The
OPJIM system will be duplicated and installed at NOSC and RADC.

The hardware interface is being implemented by Nanodata to ISI specification.
The required hardware modifications reside entirely in the QM-1, and the
hardware modules will be available as standard Nanodata options. The DEC
components (external memory and I/O bus) are available as standard options for
TOPS-20 systems (2040, 2050, and 1090T). Therefore future copies of QPRIM will
not require the direct involvement of ISI; the interested user can purchase the
entire system from DEC and Nanodata. ISI will continue to be responsible for the
O1i1M software.

MULTIPLE MICROPROCESSOR EMULATION (MMPE)

There are a number of different schemes for interconnecting
microprocessors--for example, communication over a shared bus, through common
memory, or through pairwise connections. Each of these is aimed at achieving
higlh throughput, high reliability, or both. We want to study which of these
schemes works best for a range of applications. To do so, we will set up an
emulation and measurement facility on the QM- 1 to help carry out the evaluations.

The Issues to be considered are the following:

1. What language should be used to describe the multimicroprocessor systems?

For rapid experimentation and clear communication with others, the
architectures being considered should be described in a high-level language.
ISI'S (under development at CMU) and SMITE (TRW) are the most advanced
candidate languages, but neither is adequate to describe the interconnections

PROGRAMMING RESEARCH INSTRUMENT 89

among the microprocessors. Extensions to one of the languages will be
considered and recommendations made.

2. What should be measured?

If the emulations are to provide useful feedbaJck to the system architect,
measurements relevant to the intended use of the machine need to be taken. A
low-level facility will be included for measuring the number of times
particular events take place and the length of various delays. Of greater
Interest will be a high-level facility for converting global questions about
throughput into an efficient set of low-level measurements.

3. flow should the code for the QM- I be structured?

We envision that all of the contexts for the microprocessors and the
microcode that emulates the microprocessors will be kept resident in the
control memeory of the QM-1. Relatively rapid switching, perhaps every
(emulated) instruction cycle, will be possible. However, studies of bus
loadIng and interference or studies of other queueing effects may dictate that
the emulation be event-driven. It is also possible that a mixture of round
robin and event-driven scheduling might be used for different parts of a
complex emulation. We will have to determine what emulation strategies are
required, and we will attempt to select the emulation strategy that best
matches the interconnection scheme being studied.

RESULTS

0 PRIM has successfully completed all its primary goals.

* The use of PRIM by SDL for Navy software development projects has
steadily increased.

* At the request of RADC and NOSC ISI is duplicating the PRIM system
(OIUIM) with currently available off-the-shelf computer systems.

:0 PRIM and UYK-20 are available as NSW tools.

0 A paper, "PRIM System - A Framework for Emulation-Based Debugging

Tools," was delivered at NCC 78.

maim

PROGRAMMING RESEARCH INSTRUMENT 90

FUTURE PLANS

The OPRIM system will be Implemented and tested at ISI during FY79. QPRIM
systems will be installed at RADC and NOSC in early FY80. Throughout this
development we will continue to monitor development efforts with SMITE and
ISPS, computer specification languages used for compilation of microcode, to
maintain compatibility.

PRIM tools will continue to be made available to Interested users with access
to ISIC or NSW. A minimal effort will be expended for maintenance, user interface,
and tuning of the PRIM exec. Additional emulation tools will have to be requested
and funded by the interested user.

REFERENCES

I. A Research Program in Computer Technology, Annual Technical Report,
ISI/SR-76-6, June 1976.

2. Gallenson, L. et al. PRIM System: User Reference Manual, ISI/TM-75-1.

3. Gallenson, I., A. Cooperband, and J. Goldberg, PRIM System: Tool Builder's
Manual, ISI/TM-78-7.

4. Gallenson, L., A. Cooperband, and J. Goldberg, PRIM System: UYK-20 User
Guide, ISI/TM-77-5.

5. Goldberg. J.. A. Cooperband, and L. Gallenson, "The PRIM System: An
Alternative Architecture for Emulator Development and Use," Proceedings of
the MICRO- 10 Workshop, October 5, 1977.

6. Goldberg, J.. A. Cooperband and L. Gallenson, "PRIM System: A Framework
for Emulation-based Debugging Tools," Proceedings of the AFIPS National
Computer Conference, Vol. 47, 1978.

- t l t I ...$ -'~ l l t i

91

8. PROTECTION ANALYSIS

Research Staff: Support Staffs
Jim Carlstedt Debe Hays
Richard L. Bisbey II
Dennis Hollingworth

The Protection Analysis Project was initiated at ISI in September 1973 to
further the understanding of operating system security vulnerabilities and, where
possible, to identify automatable techniques for detecting such vulnerabilities in
existing operating system software. The primary goal of the project was to make
protection evaluation both more effective and more economical by decomposing it
into more manageable and methodical subtasks, drastically reducing the
requirement for protection expertise and making it as Independent as possible of
the skills and motivation of individuals relative to security expense. The project
focused on near-term solutions to the problem in an attempt to have some impact on
the security of systems that would be in use over the next ten years.

A general strategy was identified, referred to as "pattern-directdd protection
evaluation" [Carlstedt 75] and tailored to the problem of evaluating existing
commercial operating systems. The approach provided a basis for categorizing
protection errors according to their security-relevant properties; one such category
was successfully applied to the MULTICS operating system, resulting in the
detection of previously unknown security vulnerabilities [Bisbey 78]. Several ISI
reports describe the error categories and their corresponding detection techniques
[Bisbey 75], [Bisbey 76], [Carlstedt 76], [Hollingworth 76], [Carlstedt 78a].

STATUS

Between June 1977 and September 1977, the report describing "serialization"
errors was completed [Carlstedt 78a]. An annotated bibliography and index was
also prepared [Carlstedt 78b] along with a report summarizing the work [Bisbey
78].

In September 1977, the project was terminated by mutual agreement of ARPA
IPTO and ISI. It was concluded that the pattern-directed error detection approach to
security evaluation had been shown feasible, and lacking active interest by
computer vendors, continued research by ARPA was not warranted.

I

PROTECTION ANALYSIS 92

REFERENCES

BISBEY 75 Bisbey, Richard, II, G. Popek, and J. Carlstedt, Protection Errors in
Operating Systems: Inconsistency of a Single Data Value Over Time,
USC/Information Sciences Institute, ISI/SR-75-4, December 1975.

BISBEY 76 Bisbey, Richard, II et al., Data Dependency Analysis, USC/Information
Sciences Institute, ISI/RR-76-45. February 1976.

BISBEY 78 Bisbey, Richard, 11 and D. Holiingworth, Protection Errors in Operating
Systems: Final Report, USC/Information Sciences Institute, ISI/SR-78- 13, May
1978.

CARLSTEDT 76 Carlstedt, J. et al., Pattern Directed Protection Evaluation,
USC/Information Sciences Institute, ISI/RR-75-3 1, June 1975.

CARLSTEDT 76 Carlstedt, J., Protection Errors in Operating Systems: Validation of
Critical Conditions, USC/Information Sciences Institute, ISI/SR-76-5, May
1976.

CARLSTEDT 78a Carlstedt, J., Protection Errors in Operating Systems: Serialization,
USC/In formation Sciences Institute, ISI/SR-78-9, April 1978.

CARLSTEDT 78b Carlstedt, J., Pr'otection Errors in Operating Systems: A Selected
Annotated Bibliography and Index to Terminology, USC/Information Sciences
Institute, ISI/SJI-78- 10, January 1978.

HOLLINGWORTH 76 Hollingworth, D. and Richard Bisbey 11, Protection Errors in
Operating Systems: AllocatlonlDeallocatlon Residuals, USC/Information Sciences
Institute, ISI/SR-76-7, June 1976.

93

9. I)ISTRIBUTED SENSOR NETWORKS

Research Staff: Support Staff:
Danny Cohen Debe Hays
Yechiam Yemini
Jeffrey Barnett

I. IN'I'RODUCTION

1.1 Background

ln the mid-1980s military effectiveness will depend upon rapid collection,
Interpretation, evaluation, and dissemination of information. By that time a major
portion of all strategic and tactical information will be computer-processable, and
automated information processing will replace traditional manual methods.
Achieving an integrated information system encompassing the full spectrum of
command, control, and communications (C3) functions will require a major
architecture development effort in order to integrate the corresponding C3

technologies. The Distributed Sensor Networks (DSN) research will contribute to
the development of integrated C3 information systems in two forms: first, smart
sensor networks will form an essential part of future integrated military
information systems, and second, DSNs offer a microcosm of the future operation of
integrated C3 systems.

The immediate objective of the DSN project at ISI is to develop an
architectural framework for constructing DSNs. An immediate application would
be to design DSNs for low-flying aircraft and cruise-missile detection and tracking.
The framework that we develop should also serve as a model for other DSNs (e.g.,
I)SNs to track submarines or to identify hostile artillery sources).

DSN research is directed towards both the individual development of the
three technologies (i.e., sensors, communication, and information-processing) and
their integration. That is, besides problems of developing better sensors, designing
computer communication protocols to support distributed cooperative processing,
or developing intelligent signal-processing systems using Artificial Intelligence
technology, problems exist at the interface between the different technologies. For
Instance, high-level intelligent processes should be able to influence the decisions
of the lower-level communication mechanisms to permit adaptive network
policies.

DISTRIBUTED SENSOR NETWORKS 94

The major problem as far as sensor technology is concerned is to develop
sensor capabilities such as those needed to detect low-flying aircrafts. Research is
being conducted to develop acoustic-arrays, low cost radars, and infrared sensors to
identify low-flying targets. The limitations upon the range, capabilities, and
accuracy of such sensors require that a DSN should deploy a multitude of low cost
sensors to provide good coverage.

Deploying a large number of sensors whose individual observations can
provide only partial information, blurred by noise, requires a satisfactory
communication mechanism between sensors to support collection and integration
of the sin sors' data. The development of Packet Radio Networks (PRNETs) will
provide a suitable communication technology. Once equipped with a Packet Radio
If i (iHU) each sensor could exchange information with other network members. S

Once information is collected and communicated it must be integrated and
ovaluated. DSNs will have to support sophisticated, intelligent, distributed
processing capabilities to provide those functions.

The above description, crude as it is, is sufficient to demonstrate that the
dowllopment of l)SNs should produce solutions to major problems to be faced by
d-:;igners of future C3 systems. It is in this sense that the DSN research transcends
its immediate target of providing a detection and tracking system for low-flying
targets.

1.2 Goals

At this initial stige of research, the main goal of the DSN project is to develop
a conceptual mirodel for structuring DSNs. How should sensors' signals be
trann;forined all the way into high-level intelligence in real time? How should the
different processes involved cooperate to optimize the performance? What are the
important performance measures? What are the important design parameters?
What are the .sinificant tradeoffs? These are some of the major problems
r',quiring solutions. The attempt to develop an overall model must be supported by
a concurrent effort to isolate important problems that may be treated separately.
That is, a top-down approach should be supported by a bottom-up solution of
sinificant smaller problems. We have tried to combine the two approaches in
choosig the directions for our research. I

1.3 Problems altacked

Our research has been directed in part to develop a conceptual model of DSNs.
The questions that we have tried to answer have been. How should DSNs be
co1figured? What are the functions to be supported by DSNs? Ilow should those

funictions bemodeled? What are the important issues to be resolved? How should
DSNs be described?

I)ISTRIBUTED SENSOR NETWORKS 94

The major problem as far as sensor technology is concerned is to develop
s, nsor capabilities such as those needed to detect low-flying aircrafts. Research is
being conducted to develop acoustic-arrays, low cost radars, and infrared sensors to
identify low-flying targets. The limitations upon the range, capabilities, and
accuracy of such sensors require that a DSN should deploy a multitude of low cost
sensors to provide good coveragt.

Deploying a large number of sensors whose individual observations can
provide only partial information, blurred by noise, requires a satisfactory
communication mechanism between sensors to support collection and integration
of the svnsors' data. The development of Packet Radio Networks (PRNETs) will

provide a suitable communication technology. Once equipped with a Packet Radio
Unit (11lU) each sensor could exchange information with other network members.
Once information is collected and communicated it must be integrated and
ewluated. DSNs will have to support sophisticated, intelligent, distributed
processing capabilities to provide those functions.

The above description, crude as it is, is sufficient to demonstrate that the
develoilpment of 11SNs should produce solutions to major problems to be faced by
d:igners of future C3 systems. It is in this sense that the DSN research transcends
its immediate target of providing a detection and tracking system for low-flying
targets.

1.2 Coals

At this initial staoe of research, the main goal of the DSN project is to develop
a conceptual model for structuring DSNs. flow should sensors' signals be
transformed all the way into high-level intelligence in real time? How should the
different processes involved cooperate to optimize the performance? What are the
Important performance measures? What are the important design parameters?
What are the sirnificant tradeoffs? These are some of the major problems
rquiring solutions. The attempt to develop an overall model must be supported by
a concurrent effort to isolate important problems that may be treated separately.
Th.at is, a top-down approach should be supported by a bottom-up solution of
sill.nificant smaller problems. We have tried to combine the two approaches in
choosing the directions for our research.

1.3 Problemls attacked

Otir research has been directed in part to develop a conceptual model of DSNs.
The questions that we have tried to answer have been: How should DSNs be
configured? What are the functions to be supported by DSNs? Ilow should those
functions be modeled? What are the important issues to be resolved? How should
l)SNs be described?

DISTRIBUTED SENSOR NETWORKS 95

Another direction of our effort to develop a general DSN model has been to
consider the problem of performance objectives. Here we have asked the following
querstions: What are the important performance parameters? How should we
evaluate and compare the performance of alternative DSN designs under different
target configurations?

Concurrently with our research into problems of modeling, we have
developed a software testbed to establish a concrete simulation model of DSNs.

In addition to problems of modelling we have attacked the positioning
problem. PliNet units may use a simple time-stamping protocol to measure their
relative distances. These measurements, which are virtually free, may be used to
compute the actual location of the participating units. The positioning problem is
how to locate the position of plane objects from sparse inaccurate measurements of
distances between some pairs of objects. In addition to the development of a
sol ution to this important problem, the object of this research has been to develop a
concrete understanding of issues involved in decentralized processing of
algorithms.

1.4 Results obtained

1. We have developed a methodology to model DSNs. We have isolated and
defined the boundaries of some major design problems.

Z. We have developed a mathematical taxonomy of DSN performance
parameters and a methodology to establish performance evaluation index.

3. We have developed a simulation model, the software testbed, within
which different concepts and alternative DSNs designs may be tested and
developed.

4. Finally, we have developed new mathematical theories to solve the
posttioning problem, as well as algorithms to locate the positions of objects
in the plane from distance measurements and to test the solution for error
s jsitivlty. We have implemented sophisticated software to implement
those algorithms.

2. IDEVEILOPMFNT OF A DSN MODEL

A major objective of the DSN project is the development and evaluation of
modrls of sensor-based systems. Our approach is to analyze the models when
po.ssible and to augment the analysis with simulation when necessary. The
ex pected results of this process are:

IISTRIBUTED SENSOR NETWORKS 96

1. Conclusions about behavior characteristics of DSN systems as a function of
their architecture.

P. Comparisons of behavior characteristics as functions of choices of
architecture.

3. Design of protocol schemes for intercomponent communications.

In order to properly compare and evaluate systems, it is necessary to consider
their intended use and the environment in which they operate. For example, a
system that performs extremely well only near critical regions is probably more
valuable than a system with mediocre but uniform performance. Also,
environmental effects can alter the performance of the systems in substantive
ways. e.g., wind may influence the performance of acoustic sensors.

In order to consider the above kinds of effects properly, we have generalized
the I)SN model to include both components that evaluate sensor and tracking data
(p.rhaps generating responses) and the environment as well. The additional
components could be command and control systems, control mechanisms that focus
illuminators and detectors to specific areas, and guidance systems that use the
information gathered by the rest of the system. Thus the generalized problem
statement not only has sufficient breadth to make system comparison possible, but
also is rich enough to cover the intrasystem feedback that will surely exist in
future DSNs. Even in primitive systems being considered today, feedback is an
important issue--given limited bandwidth communications, it is necessary to
transmit only the most essential data, and in a decentralized system this can be
determined only cooperatively, because no single site has available the necessary
global viewpoint.

We are currently developing a language with which to describe DSN models;
this language should serve two purposes:

1. Allow analysis of DSN models.

Z. Be executable by a simulation system.

In order to serve both purposes, the language includes an assertion
stlilanguage as well as features to express procedures. The former allows the
modellers, using mathematical notation, to describe abstract properties of system
components. Another of its important uses is the description of the DSN framework,
an abstract model that covers any DSN system, including minimal descriptions

(necessary conditions) for each category of component or object that can appear in a
ISN system. A model for a particular system is formed by adding specific assertions

DISTRIBUTED SENSOR NETWORKS 97

and procedures to the framework to complete the model. Since the language is
based upon an abst, act data type paradigm with hierarchical decomposition, this
works quite nicely--for a particular model, embellish the framework (add lower
lovnls to the hierarchy) with system-specific information; for other details, use
the minimal descriptions provided by the framework. The remainder of this
sctilon describes the major problems facing the modelling activity, the modelling
language, methodology to compare systems, and directions of future work in DSN

modelling.

2.1 The Problems

l'erhaps the most important problem facing the DSN modeller is developing a
formal framework in which to embed the models. The framework must provide a
definition of the JSN space, from which are drawn problems (scenarios) that
systems must confront as well as possible architectures and configurations that
they may employ. Further, the framework must provide one or more objective
functions to evaluate system performance and make comparison among systems
possible. More than any other activity, consideration of an appropriate objective
function brings issues into sharp focus because it demands answers to the two
quxstions: What is to be measured? and What is important? Progress on this task
is reported in Section Z.3 below.

Many important questions about sensor systems exist even in
nondecentralized configurations. Below is a partial list of these questions, the
answers to which must be reflected in the DSN framework and models:

I. What are the models of target behavior? What are the constraints on
target motion? What are the correlations between a target's behavior and
its mission?

Z. What trails do targets leave? What are the physical effects caused by
targets? flow do these effects relate to the target's behavior?

3. What trails do sensors see? To what physical phenomena does a sensor
react? What is the correlation?

4. What data do sensors output? What is the (statistical) relation of sensor
output to target behavior?

.5. What are the speed/quality/cost tradeoffs? Within a particular sensor
technology? Among different technologies?

--

.

i)iSTfItBUTED SENSOR NETWORKS 98

6. What is the state of the art in tracking multiple targets?

7. What is the state of the art in identifying targets and evaluating their
threat?

8. Ilow is the sensor output to be used? By whom?

9. low is higher level knowledge (e.g., intelligence) used?

10. What are the 5- to 16-year future answers to the above questions?

Questions 8 and 9 are the most interesting as well as the hardest to answer,
for several reasons. First, the prospects of decentralization, cheaper hardware, and
prog.ress in knowledge-based systems technology are changing the answers.
Second. the sensor technology community has traditionally deferred these two
q urtions, particularly 9, and defined their objectives in terms of tracking quality
for a given target model. Further, questions 6, 7, 8, and 9 together cover important
sv,,.or system issues that are only now being fully addressed: How, in an automated
or semlautomated manner, is sensor information to be evaluated and interpreted
and what is the possible range of system-generated response?

The prospect of decentralization may have a major impact on the possibilities
here. The first reason is obvious; in a decentralizefl Eystem, information about a
target's existence and behavior must be shared. Therefore, the decentralized system
ha!.; an opportunity to observe the target over longer time spans and hence to
oh,.erve more behavior on which to base an evaluation. The second reason, more
speculative, relies on the belief that, to work at all, decentralized systems must
ei ploy more higher level knowledge than conventional systems. If the problem of

4 knowledge incorporation can be understood well enough to perform traditional
functions, then progress will have also been made on knowledge incorporation
technologies for handling the newer problems.

Soveral other problems and issues are raisnd by the prospect of
decentralization.

1. At what levels of functionality can sensor systems be decentralized (e.g.,
Illumination, detection, tracking, etc.)? What criteria should be used?

P.. What kind of communication scheme is most appropriate? Are
application -specific protocols necessary?

3. Are special software tools necessary to implement DSNs? What form do
these tools take (e.g., special-purpose programming languages,
applications packages, etc.)?

rA

DISTRIBUTED SENSOR NETWORKS 99

4. hlow are vulnerability and reliability enhanced? What are the tradeoffs?

5. What "nontraditional" components will the network incorporate (e.g.,
command and control systems, observers with portable terminals, etc.)?

0. low should algorithims be decentralized? Some of the issues are time
delays and partial information.

7. How will the user employ the system? That is, what is the interaction
paradigm if the user needs to understand output, including verification, or
the user needs to direct or focus the activity of multiple components?

8. What are the bandwidth/performance/cost tradeoffs?

9. What advances are expected in communications technology over the 5- to
I b-year time frame?

While issue 3 may at first seem trivial, it raises a very serious problem.
Protocol schemes in current vogue have been structured so that the internal
workings of lower levels are invisible to higher levels. Assuming component and
communication technologies do not overwhelm the problem with unexpected speed
Increases, this will not do. It is crucial that applications-level decisions by
knowledgeable components affect at least priorities and flow control in the
network. If this is not the case, a DSN fails quickly on overload. A solution to this
problem involves developing a methodology for intimate interaction between
application-level programs and network software, traditionally part of the
protected operating system. A methodology that does this gracefully and still
allows reasonably structured software development is one of the major
contributions that computer science can make to the sensor technology community.
In particular, this is a central issue to be addressed in constructing the DSN
framework and system models.

2.2 A Methodology to Describe Systems

The DSN project is currently developing a formal language to encode the DSN
framework and models of DSN systems. The language borrows heavily from the
abstract data type paradigm; that is, all knowledge about a particular class of
objects is encapsulated (centralized). The knowledge may include structural
specification (such as data type declarations), operators that manipulate objects of
that class, and assertions that describe general constraints.

Further, the language permits hierarchial decomposition of the object classes.
A parent class provides default information (data and procedures) about all objects

ILj

IISTRIBUTED SENSOR NETWORKS 100

in its class. A subordinate class provides more detailed information about objects in
the subclass. There is a natural consistency requirement that the objects in the

sulbclass satisfy all assertions about objects in the parent class.

So far nothing differs from current practice with abstract data type languages
such as SIMULA or CLU. However, DSN pushes hard on an old problem: it is often
nercessary and/or desirable for a class to have more than one parent class. Consider,

for example, a natural decomposition that includes the classes CRAFT (aircraft,
ships. etc.) and EQUIPMENT (illuminators, defractors, etc.) What then is a "cruise
missile"? Surely it is a CRAFT and may even be tracked by the rest of the system,
and just as surely it can act as part of the sensor net in-detecting other craft. Also,

consider the EQUIIPME*NT class. It seems natural to divide it into subclasses based

upon function--this is even necessary if the problem of where and how to
decentralize is to be explored. But with this natural division, a radar must have
multiple parent classes of at least ILLLUMINATOR and DETECTOR and--if it is

sophlsticated--TRACKER. The problems with multiple parent classes are name
conflicts (a syntactic problem) and functional ambiguity (a semantic problem). The
functional ambiguity arises when an object is treated as if it can be made to
f u nction as a simple object, i.e., an object with a single parent. For example, if a

radar is focused as an illuminator only object to a particular sector, it loses its
detection capability in all other sectors. This is just the hidden side effect issue
brought to the applications level.

Given the number of object classes in the DSN environment, it is not feasible
to explicitly include all possible combinations of the classes in the framework--the
number of combinations quickly gets out of hand. Nor does it make sense not to use
some sort of hierarchial decomposition scheme--the Jumble of details becomes
u n manageable.

A preliminary framework for DSN has been drafted and classes with potential
multiple parentage have been identified. Three cases have arisen: (1)
people--in tellegence agents and users--perform chores similar to that performed by
(quipment, (Z) some equipment, e.g., a tracking radar, performs the aggregate tasks
of several smaller pieces of equipment, (3) craft, e.g., a cruise missile, can perform
as craft and sensor equipment. To lessen problem 1 some human functions are
modeled as if they are equipment functions. Problem 2 is being approached either

by suppressing certain functions (e.g., assuming that a radar's illuminator function
can be safely ignored by the rest of the model) or by modelling the separate
fu nctions as separate pieces of equipment connected by a tightly coupled network.

A solution to problem 3 remains elusive. For the present, the language provides the

ability for specifying multiple parent classes i.e., class intersection. For this
particular case, there is no serious problem; however, as a general language feature,

a potential exists for undesirable effects to occur.

)ISTIBIIUTED SENSOR1 NETWORKS 101

In order to allow the language to serve its intended functions--framework
and model descriptions--an assertion sublanguage is provided. Often, the
framework and higher level object classes in a model need not provide detailed
procedural knowledge. Instead, assertions written in an extended first-order
predicate calculus describe the effects and constraints on objects and associated
operators. The assertion sublanguage has the advantage that it lends itself directly
to analysis. Further, it makes sense to say that a child class must be consistent
with the parent's assertion while the alternative, a requirement of
procedure-to-procedure consistency, would allow no room to supply missing
details.

In addition to serving as a tool for modelling and description, the language
nmmst also be used for simulation. The two most important decisions in selecting a
simulation regime are how to handle time and how to communicate information
among the modelled objects. For DSN, discrete time simulation is the most natural
because knowledge about craft and equipment is generally given as difference
equations or as state machines. Also, discrete time simulations (particularly
event-driven) are in general the most efficient.

The information communication regime selected for simulating DSN is based
upon the Hearsay i blackboard scheme developed at CMU. The blackboard is a
global data structure used to communicate information among parallel cooperative
processes, which use a pattern to detect interesting data on the blackboard. If the
pattern is matched, the processes are scheduled for execution with the blackboard
data as arguments. Thus, process activation can be called data-directed or "demon"
Invocation.

For purposes of DSN, each process is associated with an object, i.e., a craft or
piece of equipment. Because of the decentralization, it is obvious that each process
should be able to see only the data that is appropriate--not the entire
blackboard--or the simulation would be centralized. Thus, the pattern for each
process restricts the data seen by the process to its actual focus, comprising location
and physical characteristics. For example, a radar can detect objects only within a
given radius and is insensitive to acoustic communications. Thus, even though a
microphone sensor may be sensitive to sounds from behind a physical barrier, a
radar will not. The pattern also expresses "wake up" conditions. A wake up
condition (or interrupt) is an external event or situation that can alter the normal

flow in a process.

There are many advantages to using a blackboard scheme for DSN simulation,
chief of which is decoupling complexity: that is, a process can receive its
arguments and produce its results with no knowledge of what other process(es)
will use its output. For example, a process that generates a trajectory for an

DISTIBIIUTED SENSOR NETWORKS 102

airplane need not know (or care) whether the sensing device in this simulation is a
microphone, a radar, or both. Another advantage of a blackboard and data-driven
activation is the enhanced ability to provide a good trace package. The trace and
dr'lutgging routines can use the pattern activation scheme to find interesting data
for display. It is necessary for a good simulation system to provide not only
summnries, but also a methodology for examining its step-by-step inner workings.

The blackloard is also used to represent network states, which means that
characteristics of a network behavior can be modified by changing the process that
simulates it without modifying the nodes on that network. Thus, many
experiments about system performance can be performed with minimal changes to
the system model.

The framework and modelling language allow for two types of entities:
objects and artifacts. The former are such things as equipment, craft, and
£j'.voraphical targets. The latter are time-varying entities such as virtual objects
anl states of objects. A virtual object is an entity that exists for convenience of
d'.cription; for example, a set of equipment not a priori aggregated may
dynamically take up a common goal. Such an aggregation would be called a cluster.
Some of the members of the cluster may be assigned specific tasks such as
intercluster communication or tracking. For the lifetime of the cluster, it would
be treated as an object and its state maintained by the system.

It is the artifacts that are kept on the simulator's blackboard. Each artifact is

comprised of several attribute/value pairs. At a minimum, the artifact must
Medntify its type. e.g,.. craft state, and its period of validity. Othe- attributes are
sp'cific to the type. The language provides a mechanism for describing the
constituent attributes for each type, including data type restrictions for the
attributes as well as the ability to attach special procedures to instances of the type.
The procedures can provide computations depending upon details of data storage
that are not of concern to users of the type. Artifact type declarations can be
hir.rarchically decomposed; for example, the subtype acoustic sample adds the
attributes frequency and loudness to those specified for the parent type, sample.

The language provides for the definitions of operators. An operator is a
process scheme. The definition describes under what circumstances to create
processes; for example, an operator associated with some class of airplane specifies

an instance for each particular airplane of that class that is to participate in the
simulation. An operator definition provides in addition an activation pattern for
thr processes and computation component.

in general, an operator interrogates one or more knowledr.o bases to obtain
data and algorithms specific to its associated object. Knowledge bases are another

DISTIBUTED SENSOR NETWORKS 103

example of an abstract data type mechanism in the language; they are used as
structured constants that contain the model's static knowledge about object classes
and specific objects. In a sense, an operator is an interpreter and the knowledge
bases are the program text.

Titus, the language provides two kinds of hierarchically decomposable
abstract data types--artifacts and knowledge bases. The former are instances of
time-varying states and objects and the latter instances of static information.
Artifacts appear on the blackboard, are "seen" by operator patterns, and are created
and manipulated by operators; knowledge base instances are not. Also note that the
oporators are not associated as functions of a particular data type; they may access
knowledge bases and artifacts across many levels and branches of the hierarchies as
nree~d be. For example, an operator generating a craft trajectory needs to view
anl/or manipulate artifacts from many types including mission, craft state and
e'nvironment, and it must access the knowledge bases describing craft
characteristics and target location information.

The language provides many features for the more program-specific chores of
getierating the framework and models. Several built-in types, with associated
operators, are inchuded--integer, real, and complex are the built-in numerical types
and boolean and identifier are the built-in nonnumerical types. Other types can be
constructed from the built-in types and other constructed types, e.g., lists, directed
produerts, and structures. Also, a primitive type definition facility is provided for
Iiore complex type declarations when operators need to be associated with
intances of the type. An example of such a primitive type is coordinate location,
whose associated operators are distance and heading between two locations. The
primitive type facility allows the declaration of physical dimensions, such as mass
and velocity, and the declaration of units within the dimensions, such as
kilometers and miles. This sort of facility is very important in simulation and
Jmodelling languages because experience has shown that when several people
participate in model construction a large number of errors occur without it. It is
thr. simulator's responsibility to assure that expressions are
dimensional-compatible and to automatically perform the necessary units
conversions.

The Il)SN project is also investigating the construction of a translator whose
jolb would be to perform consistency checks on the framework and models and
translate the models into an executable form. The simulator will operate either in
SIMUIJA or INTEIILTSP; a firm decision has not yet been made. The former offers
thro advantages of efficiency and compatibility with the abstract data typing, while
thp latter's advantage is flexibility. One major consideration is the creation of a
display package for presentation of simulation results; the simulation system will
tie a a software testbed for testing and evolving possible DSN architectures, and as

iISTIIIBUTED SENSORI NETWORKS 104

such it must have the wherewithal to present usable results to many who are not
directly a part of the computer science community. Section 4 describes our
currently available testbed.

2.3 Methodology to Assign Performance Measures

Th purpose of this research has been to develop a method by which the
performnance of DSN can be paramaterized. The methodology first provides a means
of comparing the performance of alternative designs of DSN, under various target
cot fip~uratlons. By quantifying the performance, it is also possible to examine
simulation and analytic models of DSN and identify critical design parameters and
tradeoffs.

We have considered first the problem of single-target tracking. We have
classified the different types of "tracking errors" and the tifferent methods to
evaiate those errors. This study differs from the classical development of
objective functions mainly in its scope and generality. Classically, an objective
futction of an estimation algorithm is based on a certain target model that
underlies the whole scheme. The problem is then to chose the best scheme with
respect to the given model. Since in a DSN the choice of target model is but another
dr-..i .n problem, we must develop a performance evaluation scheme independent of
the tar.at model of the tracking algorithms. It is primarily in this sense that our
scheme differs from the classical approach.

Once we have established a scheme to evaluate single-target tracking errors,
wI, proceed to the multi-target scenario. lere new problems arise when we
consider the problem of associating estimated tracks with targets. For instance,
how should we evaluate the performance of a DSN that cannot resolve two targets
unless they are at least a mile away, or going in different directions? How should
w, evaluate the performance of a DSN that produces many false tracks when
confronted with dense clusters of targets? These and other problems of
multi-target tracking evaluation have been successfully resolved by using
tochniqurs of clustering theory.

Now that a performance evaluation methodology has been established, it will

be possible to examine analytic and simulation models of the major design
parameters and tradeoffs.

2.4 Future Research

Several problems occupy the immediate future of the DSN modelling effort,
the two most pressing of which are completing the language design and encoding
the framework in that language. Completing the framework description requires

IISTR, IBUTED SENSOII NETWORKS 105

thoroug.hly understanding the present and future possibilities for sensor
e iipinent and higher level components, developing an outline of communications

r- 'qui rer nts. and choosing objective functions.

Given progress on the above items, the next steps are inplementing the new
sof tware testbed and developing communication schemes for the systems. The most
iimportant and intellectually challenging problem at this stage is the investigation
of mrthodology to incorporate application-level knowledge into communications
protocols.

l'uture work will consist of using the software testbed and analysis
t,-hniques to evaluate possible DSN architectures, the result of which will be a
catregorization of the available options and the tradeoffs between the options and
system performance and costs.

3. POSITION LOCATION

3.1 l),fiuition of the problems

Thl'e positioning problem arises when it is necessary to locate a set of

g(og.raphically distributed objects using measurements of the distances between
some object pairs. In a PRNct, for instance, any two network members that can talk
to e ch other may use a simple time-stamping mechanism to measure the distance
litween them; a distance measurement protocol may then be developed. The
problem is whether and how the distance measurements can be used to determine

th rgeographical location with respect to a given system of coordinates.

knowledge of the precise location of each network node is crucial to the

optoration of DSNs. The data collected and interpreted by different sensors may be
correlated and integrated only if we know their precise location. A
po).ttiol-locating system may be invaluable to the operation of a fleet of vehicles,

each equipped with a Packet Radio Unit. For example, monitoring the location of a
fleet of security vehicles, aircraft, a tank division, or a flock of missiles could all
be assisted by a posiition-locating system. Clearly a positioning system would be an
I m portant service to PRNet users.

A few problems must be solved before a good positioning system may be
developed:

1. Efficient algorithms should be developed to determine the location of
objects by means of distance measurements.

lISTIIBUTED SENSOIR NETWORKS 106

. Conditions should be established under which there exists a- unique
s olution.

3. Conditions should be identified under which there exists a finite number
of solutions. It should also .e understood how to transform one solution
in to another.

4. Conditions should be established under which the solution is insensitive
to small measurement errors.

5. Tiglh t bounds upon the accuracy of the solution should be determined.

C). 14',dundant measurements should be used to eliminate errors.

However, while the formulation of the problems is simple, the mathematical
and algorithmic intricacies of deriving solutions are perplexing.

3.. An approach towards a solution

There are two possible approaches to the positioning problem. The "brute
force" approach is to descr'llie the constraints imposed by the distance measurements
int terms of a system of equations in the unknown location coordinates of the
ol'jects. A large system of sparse nonlinear equations is obtained. It is possible to
apply iterative methods that may converge to a possible solution if we start with a
Ifood initial guess. This approach leads to cumbersome computational processes that
maIy not be applicable to large systems, may never converge to a solution, may
converge to a wrong solution, cannot be properly decentralized, and finally cannot
inrorporate other information (which may be provided by other sources such as

liu man operators) to alleviate the computational task.

The other alternative is to develop an intelligent method of solution that
ief,-ntif les proper soltution strategies from the structural combinatorial properties of
the problem. The Idea is to develop an incremental algorithm that identifies and
locates the position of subsets of objects incrementally until a full solution is
obtained. This I., but another application of the age-old "divide-and-conquer" rule.

Si tic the proce.::-es of identifying, subsets of objects whose relative positions can be
solvd may occur simultaneousely at different parts of the network, this approach
i,.,.ds to an all'orithm that may be implemented in terms of decentralized
computations. Int addition, an incremental method should be intelligent enough to
id'ntify ill-conditioned problems, information insufficient for generating a
solution (and what additional measurements should be performed). It is also

possible to identify and generate all possible solutions when the set of solutions is
sufficlently small, lrting a human operator select the most reasonable solution or

IDISTJIlIBUTFD SENSOI NETWORKS 107

guide the system towards the most reasonable alternative. In short, the approach
through incrumental algorithms offers a range of attractive features.

The major difficulty with the incremental approach is that before an
intlligent algorithm may be constructed, the required intelligence must be

doveloped. For lustauce, how should the algorithm identify subsets of objects that
can be located? How should it locate those subsets once identified? These and
other major problems must be properly addressed. The difficulty is far from being

trivial, for the positioning problem has been attacked (though in other forms) by
many prominent mathematicians and scientists over a period of a few centuries, yet
most problems that have been listed in the previous section are far from having a
satisfactory solution.

We have careftlly studied the results obtained by generations of researchers,
added our owa novel contributions, and incorporated this knowledge into a

sophisticated position location algorithm possessing most of the desirable properties

expected from the incremental approach. In what follows we shall describe these
results.

3.3 iDescriplion of results

Our major thrust has been to develop a mathematical theory to understand the

positioning problem and then apply the theoretical study to develop intelligent
algrorithms. Accordingly, our results fall in two categories--theoretical and
algorithmic.

3.3.1 Throrcical reslts

The positioning problem may be modeled as follows. Objects are represented
as vertices of a graph; two vertices are connected if the respective objects have

measured the distance between them. The measurement process may be thought of
as an assignment of lengths to the edge of the system graph. A graph together with
an assignment of edge-lengths is called a structure. If we identify edges with rigid
bars and vertices with pin-joints, then our "structures" correspond to pin-jointed
mechanical structures. The problems of positioning are analogous to problems of
constructing skeletal structures. For instance, a positioning problem that is not
wel I determined (i.e., possesses a continuum of solutions) corresponds to a nonrigid

mechanical structure- a positioning problem whose solution is sensitive to

measurement errors corresponds to a mechanical structure that is not
i nfinitesimally rigid (i.e., admits nontrivial infinitesimal perturbations), and so on.

In view of the analogy above, we have adopted the terminology and some
major results of the theory of structural rigidity. Unfortunately, the main concern

DISTIIBUTED SENSOR NETWORKS 108

or structural engineers has been to evaluate the strength of structures that have
alr'ady been constructed. Very little has been done to attack the Problem of how to
construct structures, which is our main interest.

The major results of rigidity theory are a few equivalent characterizations of
rigidity and a recnt theorem which establishes that rigidity (a geometric
property) is almost always identical to a combinatorial property of having enough
wll distributed equations (measurements) to find the unknown coordinates. This
last combinatorial property, which we call stiffness, is independent of the actual
distances measured; it is a property of the system graph only. The rigidity theorem
is i nvaluable for the study of incremental positioning algorithms, since it provides
us with simple criteria to recognize systems whose positions may be located.

Our novel theoretical results include the following:

1. A new criterion for rigidity of positioning systems, which may be
implemented in terms of a fast algorithm (thus effectively determining
whether or not a given system is error-sensitive or not).

2. A set of combinatorial theorems relating stiffness to other graph
properties. For instance, we developed methods to tear graphs into stiff
comtponents so that positioning problems may be divided before they are
conquered. Other significant heuristics were developed and many
intuitively appealing heuristics were shown to be false through difficult
counterexaniples.

3. A fast algorithm to determine whether a given graph is stiff (i.e.,
represents a constructible positioning system).

4. A novel theory of stiff-hypergraphs within which it is possible to
formulate develop and prove properties of any incremental position
location algorithm.

5. In addition, as a byproduct, we have derived some results that have little
pragmatic value but bear significant theoretical implications. We have
shown some problems of positioning are NP complete (that is, as difficult
as a whole class of classical problems for which no polynomial time
alg.orithms are known). For instance, the problem of finding the correct
solution of a triangulated positioning system (i.e., one constructible from
triangles), among all possible relative reflections of the triangles with
r,,;pect to each other, is NP complete. This implies in particular that the
problem of determining whether a solution to a positioning problem exists
is Nl' complete.

DISTRIBUTED SENSOR NETWORKS 109

.~3.. Algorithmic results

The heuristics developed through the theoretical study of positioning

problems were implemented into sophisticated software designed to support

Inc:remental positioning algorithms. The idea behind our position-location

algorithms is simple. We conceive of an incremental position-location algorithm as

a miechanism that identifies stiff substructures of a structure and welds these

stibltrUctures together. The welding process corresponds to a solution of the

rulativ location of points belonging to a substructure, relative to a local coordinate

system. The welding, process is applied recursively to the structure until all parts

of the structure are welded together (i.e., all locations are known). This

incremental welding process is demonstrated in Fig. 9.1.

We have implemented the concepts and tools required to develop positioning

allgorithms within a SIMULA system. A few welding operators have been

implemen ted and tested successfully on some positioning problems.

00
• • .. 1 ..

0 "." ... o .0 0 0 :.:o.

0 0-

0:

0. 0. i . 0..- 0". '., . . . 0.,

.0

"0. 0 0 .. i--0 0 0 ",.;.-

(a) A position-location problem. M A base triangle Is identified.

Figure9.1 Incremental "welding" algorithms

J)JSTIIIBUTED SENSOR NETWORKS 110

o 00

0%0

0#

()A 3-pin (ne nneitfed aith 3 () Mr 3-points are welded into thee

edges o pis salsed.oioe)i body. Nte noa tore 3-onts rei aviabe

withed tosc tto thecomanedelbod)

0 iue. 0nrmna wlig lgrtns(otne)

DISTRIBUTED SENSOR NETWORKS 1I1

ofrfecio is elmna. The." two" boy hn3pitsiomnhv

o ,0

(g) A new edge connecting the two (h) A new body is established, initially

bodies has been identified. The freedom with one point in common with the older

of reflection is eliminated. The two body. When 3 points in common have

food ies are welded together into a single ltwen identified, the two bodies are welded

lody. together.

Figu re 9.1 Incremental "welding" algorithms (continued).

3.4 Cotchlsions

The incremental approach to position-location problems yields attractive

solutions. We have been able to develop a significant theory from which a large

n umber of heuristics were identified and an equally large number of plausible

heuristics eliminated through counterexamples.

Thr, theoretical results were used to develop position-location algorithms that

can solve a large class of positioning problems, can identify ill-conditioned and

Prror-.insitive prolilrns, and can be expanded to include more sophisticated

liruristics employing other intelligence than distance measurements only. Finally,

the position-location algorithms can be distributed among the participating

network members and be executed concurrently at many sites in a decentralized

fa;h ion.

DJISTRIBUTED SENSOR NETWORKS 112

3.5 Fulure research

A few Important directions for a future research can be identified:

1. The set of heuristics should be expanded.

R. The existing software should be expanded to include those heuristics and
to solve a larger class of problems.

3. The problem of analyzing measurement errors and eliminating them
th rough redundant measurements should be addressed.

4. A protocol to decentralize the position location algorithms should be
developed.

4. SOFTWARE TESTBED

As part of the IDSN project a software testbed was implemented for performing
some experiments related to the distributional nature of DSN in general.

The model uscd for the DSN environment was one of remote processes
cooperating to achieve a common joint objective, with limited communication
capability.)ue to the remoteness of the processes and the limited communication
liandwidth between them, no synchronization is assumed. In addition, the
communication subsystem is assumed to have a random performance of the same
nature and characteristics as that of a "typical" computer communication network,
whvose performance varies as a function of the total load on the entire network.

A set of moving targets is simulated, each with arbitrary independent
characteristics (time-varying speed and heading). The set of all the targets, their
momentary positions, and velocities is considered as the state of the world, which
is so ietimes referred to as the true-state, as opposed to the estimated-state
produced by the I)SN.

Several sensors are simulated, each with an arbitrary position and

characteristics. A svnsor is modeled as a time-dependent random filter which
pprforms a transformation of the limited world information (to which it has
access) Into a set of observations.

A iart of each sensor definition is its characteristics, which determine its
procision (or measurements noise), its range, its detection probability distribution
(which depends on the range to the target), its false-alarm probabilities, etc. The
sIsors proce.ss their observations according to some regime and send summaries of
thvir observations to a "central" unit which then reports to a human operator the
estimated situation (the estimated state of the world).

• I I I I I I I III I I III II - l I " II I I I II I
I I I

I I III] 7

iSTIIJBJTFlSENSOII NETWOBIKS 113

The, performance of the entire DSN system is the "degree of agreement"
I-I ween the trup-state and the estimated-state of the world.

Since both the processing and the communication capabilities are limited, the
choice of what is communicated, how it is communicated, and when it is
commutnlcated is of the utmost importance.

It J.% obvious that In general no distributed processing scheme based on the
availability of partial information only, at each sensor, can outperform a

c,,litrdlI?,1d systvm which has all the desired communication and processing
capabilities, because the latter can simulate the former, if so desired, but not vice

t11rortunately, this choice is never available in practice, since such a
ceitralization is neither feasible nor desired.

Mne of the more interesting scenarios investigated in this framework employs
so.qors which are intermittent, in the sense that the operability of each is a random

Va1 table.

At any moment the load on the entire comunication system and the demand
for proce.ssing depend on the number of active sensors at that instance and the
i m inber of targets detected by the sensors. When this load exceeds the capacity of
the sy.stem (in either communication or processing), some flow control mechanism
must be Introduced to protect the system resources.

The most startling result of this kind of experiment was the realization that
lDSNs require yet another discipline of flow control, never encountered before in
contveuntional conputer communication networks.

Typically, flow control is introduced by way of holding sources back, such
that the total demand for resources does not exceed the available capacity. In a file
transfer operation, for example, the transmission is held back (i.e., delayed) until
r,,ources (e.g., buffers) become available. Hence, delay is introduced in order to
,uarantee that the total amount of data is communicated.

In a I)SN situation, the situation is different. When the load is expected to
ex:eed the capacity of the resources, the data rate is reduced, and therefore the
total amount of data is decreased in order to guarantee that no delay exceeds some

allowed threshhold.

In summary: when half of the capacity is lost, all targets are tracked, but at

hal f of the frequency only, as opposed to an FTP application which would transfer
only half of the files in their entirety rather than only half of all the files. Hence,
cotiventional flow control favors an "all-of-part" approach whereas DSN flow
control should favor a "part-of-all" approach.

DISTRIBUTED SENSOR NETWORKS 114

In that scenario, the sensors send summaries of their detection to a process
which prepares this information for graphic presentation to the operator of the
systeni. The critical resources (bottlenecks) of the system are either the
communication capacity of the network, from the sensors to this unit, or its own
processing capacity. A scheme to dynamically monitor the achieved performance
was implemented and used to optimize the overall system performance by adapting
thp transmission rates of the individual sensors.

Evcn though the techniques developed here are not necessarily the most
.;.-neral and were not proven as optimal under the most general conditions, they

se'rved an important role by focusing attention on some aspects of the DSN
communication of which we were not aware before.

I-i

1',4

115

10. INTERNETWORK CONCEPTS

R. s.arch $aff: Rewarch Asiseants: Support Staff:
Panny Cohen Greg Finn Debe Hays
Jon l'ostel Alan Katz Mamie Chew

Paul Mockapetris

INTRODUCTION

The interconnection of packet-switched computer communication networks
requires careful attention to the design of internetwork level, host level, and
hig her level protocols. The Internetwork Concepts (INC) research project explores
aspects of protocols for the interconnection of computer communication networks,
sprci fically the design and prototype implementation of an internetwork computer
message system and the design of internetwork host and gateway protocols.

OVERVIEW

ISI addresses its effort to the issues and methodology of interconnecting
computer communication networks that were not designed or implemented with
the goal of internetworking in mind.

Since the essence of the problem is the variety of models, disciplines, and
methodologies (in addition to the simpler differences of formatting and
performance parameters), a systematic network-independent approach is sought.

Pursuing this goal, ISI has made a significant impact on ARPA
internetworking. INI suggested introducing an essential level of protocol, the
intrrnetriork level protocol (IN), which is network-independent and more general
than any individual network protocol.

ISI's impact upon ARPA internetworking is apparent in several areas:

I. The separation of the internetworking issues from the issues of achieving
a reliable, end-to-end transmission control protocol (TCP).

P.. The ability to support a variety of types of service (TOS) to better
accommodate the requirements posed by the higher level protocols, such
as those for terminal communication, file transfer, interactive (i.e.,
conversational) voice, and the like.

INTERNETWORK CONCEPTS 116

3. The ability of the IN level to support other protocols, besides the original

TCP for internetwork communication.

RFSEARCH AND DEVELOPMENT GOALS

The goals of the INC project are to provide appropriate and effective designs
for the primary user service applications in the internetwork environment, based
on a set of host and gateway level protocols that provide the full range of service

characteristics appropriate to a wide range of applications (e.g., speech, graphics,

text).

The task areas are as follows:

Internetwork Communication Concepts Research explores the possibilities for
using interconnected networks of packet-switched computer communi-

cation systems In new and innovative ways, especially focusing on the
conceptual notions and structuring of communication protocols.

Internetwoork Applications is developing an internetwork computer-message
facility which appears to the user much like one of the current ARPANET
computer message processing programs (e.g., MSG), but provides for
communication across network boundaries, removes several restrictions
on the form of message objects, and improves the efficiency of message
transmission. The main result of this experiment will be a set of
guidelines forthe design of internetwork computer-message systems.

Internetwork Protocol Design is studying the types of service needed for use
In the Internetwork environment. The resulting recommendation will
provide a sinall set of user-selectable service types which can be translated
by gateways and networks into appropriate internal network capabilities.

Internetwork Co, inunicntion Concepts Research

This task identifies concepts in the use of packet-switched computer
communications in the Internetwork environment.

I. Approach

This is a difficult task that requires an awareness of both
conimunication problems and the current and potential capabilities of

packet-switched internetwork systems. New concepts for innovative use of
technology often arise from discussions with people from different technical
backgrounds or with different approaches to similar problems.

INTEINETWORK CONCEPTS 117

To carry out this task, we maintain current knowledge of the

capabilities and prospects of the packet-switching internetwork system by

reviewing new documents and attending meetings of the active workers in
this field. We are also engaged in discussions with people who have

communications problems that might or might not be relieved through use of

packet-switching technology.

Any requirement to translate communication primitives between

different networks may cause information loss because no network can be

arsuied to be able to capture the entirety of the information that other
networks (or the union of all other networks) carry. The essence of our

approach is to circumvent this information loss by encapsulating the
information at a level which does not suffer such translations, the internet

lrvel.

This approach can also be applied to other services that must be provided
across network boundaries but that were originally implemented in each

network in a specific way, incompatible with other networks. Examples of
such services are file transfer and computer-message systems.

ISI is tasked with demonstrating the feasibility of providing a message
service across networks in a way which seems compatible to the individual

networks involved yet is operational in the internetwork environment.

Results

Our interactions with the ARPA Internet Working Group have been

influential in recognizing the need for a distinct internet datagram level

protocol and the separation of the TCP into a recognized Internet Protocol (IN)

and a strictly host-to-host protocol (TCP).

Internetwork Applications

The experiment in developing an internetwork computer-message service

is under way.

Approach

The in ternetwork computer-message facility workings may most easily

be understood by following a message item from its construction through its
delivery and filing or destruction.

INTERNETWORK CONCEPTS 118

First, the user who wishes to send a message logs in to her home host
computer and starts the user application message processing program (let's
call this program user-message).

User-message will be much like existing message processing programs
in the TENEX environment (for example, MSG).

In user-message, the user enters the commands to create a new message,
possibly dropping into a text editor to rework certain fields of the message
(the body of the message is also considered a field).

When entering the address field, the user will specify the internetwork
address; this leads to a question about how to express an internetwork
address, and how to allow partial address specification without
ambiguity. A memo by Harrenstien suggests some ideas which we will
draw on [9].

Users should be allowed to indicate destination hosts via symbolic names
that may be nicknames used at the sender's site. The sending program
would have to have a machine-readable table (symbolic names vs.
network address) to do the proper routing.

For the Internet Working Group, we have recently made some
suggestions on these issues by proposing a name syntax and a name
server process [33].

When satisfied with her composition, the user enters the command to send
the message. User-message now turns the message over to another
program--the message sending and receiving program, which we will call
post-office.

The form of the messages as stored and as communicated between
programs will be structured to allow more efficient processing of fields
by the message programs user-message and post-office, and to allow to
be Included structured information in the body of the message. The
structuring concept used will be based on the NSW transmission format
NSWB8, and the MSDTP [1].

The post-office program is an always-present background program (in some
systems such programs are called daemons) which becomes active when
presented with work to do. The post-office checks the message headers for
addresses and sends copies of the message to counterpart post-offices.

INTE RNETWORK CONCEPTS 119

The post-offices are users of communication services and do not
particularly care how those services are implemented. From the
post-off ice's point of view, it is engaged in interprocess communication;
the fact that a network (or rather an internetwork system) is involved
is irrelevant. But we care immensely about the underlying
communication. The whole point of this experiment is to design
mechanisms and interfaces to make it possible for the post-office to
maintain its network-independent view.

The message travels across the interconnected networks and arrives at a
receiving post-office.

The mechanisms actually used for communication between the
post-offices are a key design parameter. When a message item is
addressed to several destinations in a remote network, only one copy
need be sent to the internetwork post-office for that network, and the
internetwork post-office can take responsibility for routing copies to
each recipient's host within that network.

This receiving, post-office checks the message header fields for addresses at
its site and delivers the message to the message files of those addressees. If
the addressee list contains names incorrectly listed at the post-office's site,
the post-office forwards the message to the correct site (if it knows it) and
so informs the originating post-office.

To be able to know where to forward incorrectly addressed messages,
the post-office will have to have a file of old and new address pairs; one
would expect that this list would be primarily composed of message file
names recently valid at this site but now discontinued.

Results

The experimental post-office is under development on TOPS-20. The
design of the program and the post-office-to-post-office communication
format is documented in a project Internal memo [26].

Internetwork Protocol Design

This task is aimed at identifying the variety of services which users can
reasonably expect from the internetwork environment and the services which
different networks should offer for useful internetworking, then reviewing
the host and gateway level internetwork protocols and recommending ways of
including in them the service features identified.

INTERNETWORK CONCEPTS 120

Plan of Attack

Our approach is to examine the service offered by several networks and
the service optimal to several applications, and by comparing and contrasting
these findings to characterize the key aspects of service that can be
reasonably provided to and selected by the user.

The type of service is important both for the end-to-end communication
level and for the transmission level. Since different networks possibly offer
d i fferent services, the type of service information should be available to each
gateway participating in the actual transmission.

A prime characteristic is a reliabilitylspeed trade-off. The user might indicate
that he prefers that message losses not be recovered if this is associated

"with a high delay, or inversely, that any delay is Justified in order to
transmit all portions of the communication reliably. The former type of
service is typical of highly redundant communication, like voice
communication, and the latter is typical of communication which is not
redundant at all, such as executable program files.

Another characteristic is flow-rate. Along this spectrum, several values may

be specified, like flood (e.g., file transfer), drops (e.g., terminal
communication), or stream (e.g., rate-bounded real-time interprocess

communication).

In addition, another characteristic is priority to show the importance of
delivery. This could influence the allocation of transmission resources,
especially in time of crisis.

Results

We have defined a set of type-of-service parameters for use in the
In ternet protocol [28], and we are working to produce a set of mappings from
those parameters to specific settings for each of the networks in the internet
system.

INTERNETWORK CONCEPTS 121

REFERENCES

[1] laverty, J., "MSDTP--Message Services Data Transmission Protocol," RFC
713, NIC 34739, April 1976.

[2] Cohen, D., "Internetting or Beyond NCP," USC/Information Sciences Institute,
IFN-1I, March 1977.

[3] Postel, J., "Extensible Field Addressing," USC/Information Sciences Institute,
IWC-730. NIC-40400 IEN-16, May 1977.

[4] Postel, J., "TCP Meeting, Notes - 14 & 15 July 1977," USC/Information
Sciences Institute, NIC-29449, August 1977.

[5] Postel, J., "Internet Meeting Notes - 15 August 1977," USC/Information
Sciences Institute, IEN-3, August 1977.

[6] Postel, J., "Comments on Internetwork Protocols and TCP," USC/Information
Sciences Institute, IEN-2, August 1977.

[7] Davldson, J., W. Hathaway, J. Postel, N. Mimno, R. Thomas, and D. Walden,
"The AIPANET TELNET Protocol: Its Purpose, Principles, Implementation,
and Impact on Host Operating System Design," Proceedings of the Fifth Data
Communications Symposium, ACM/IEEE, Snowbird, Utah, September 1977.

[8] Cohen, D., "Issues in Transnet Packetized Voice Communication," Proceedings
of the Fifth Data Communications Symposium, ACM/IEEE, Snowbird, Utah,
September 1977.

[9] llarrenstien, K., "Field Addressing," ARPANET message, October 1977.

[10] Postel, J., "TCP Meeting Notes - 13 & 14 October 1977," USC/Information
Sciences Institute, October 1977.

[11] Cerf, V. and J. Postel, "Specification of Internetwork Transmission Control

Program -- TCP (Version 3)," USC/Information Sciences Institute, IEN-21,
January 1978.

[12] Cohen, D., "On Names, Addresses and Routings," USC/Information Sciences
Institute, IEN-23, January 1978.

INTERNETWORK CONCEPTS 122

[13] Postel, J., "TCP Meeting Notes - 30 & 31 January 1978," USC/Information
Sciences Institute, January 1978.

[14] Postel, J., "Internet Meeting Notes - 1 February 1978," USC/Information
Sciences Institute, IEN-22, February 1978.

[15] Postel, J., "Draft Internet Protocol Specification (Version 2),"
USC/Information Sciences Institute, IEN-28, February 1978.

[16] Cohen, D., "A Protocol for Packet Switching Voice Communication,"

Computer Networks Protocols Symposium, Liege, Belgium, February 1978.

[17] Postel, J., "INWG FTP Note," USC/Information Sciences Institute, April 1978.

[18] Postel, J., "Internet Meeting Notes - I & 2 May 1978," USC/Information
Sciences Institute, IEN-33, May 1978.

19] Postel, J., "NSW Transaction Protocol (NSWTP)," USC/Information Sciences
Institute, IEN-38, May 1978.

[20] Postel, J., "NSW Data Representation (NSWB8)," USC/Information Sciences
Institute, IEN-39, May 1978.

[21] Postel, J., "TCP Meeting Notes - 15 & 16 June 1978," USC/Information
Sciences Institute, June 1978.

[22] Postel, J., "Draft Specification of the Internetwork Transmission Control
Protocol - Version 4," USC/Information Sciences Institute, IEN-40, June
1978.

[23] Postel, J., "Draft Internet Protocol Specification (Version 4),"
USC/In formation Sciences Institute, IEN-4 1, June 1978.

[24] Postel, J., "Latest Header Formats," USC/Information Sciences Institute,
IEN-44, June 1978.

(Z.5] Clark, D. and D. Cohen, "A Proposal for Addressing and Routing in the
Internet," USC/Information Sciences Institute, IEN-46, June 1978.

[(G] Postel, J., Alan Katz, Greg Finn and Paul Mockapetris, "The ARPANET Mail
System," USC/Information Sciences Institute, INC Project Memo, June 1978.

INTERNETWORK CONCEPTS 1216

[27] Cohen, D., "Some Thoughts about Multiplexing Issues in Networks,"

USC/Information Sciences Institute, IEN-52, August 1978.

[28] Postel, J., "Internet Meeting Notes - 2 & 3 & 4 August 1978;"

USC/Information Sciences Institute, IEN-53, August 1978.

[29] Postel, J., "Assigned Numbers," USC/Information Sciences Institute,
RFC-750, NIC-45500, September 1978.

[30] Plostel, J., "Internet Protocol Specification (Version 4)," USC/Information

Sciences Institute, IEN-54, September 1978.

[31] Postel, J., "Specification of the Internetwork Transmission Control Protocol -

Version 4," USC/Information Sciences Institute, IEN-55, September 1978.

[3?] Postel, J., "TCP Meeting Notes - 18 & 19 September 1978," USC/Information
Sciences Institute, October 1978.

[33] Postel, J., "Internet Name Server," USC/Information Sciences Institute,
IEN-61, October 1978.

I4

125

11. PACKET RADIO TERMINAL SYSTEM EVALUATION

Staff:
Tom Ellis
Steve Saunders

INTRODUCTION

ARPA is currently developing a Packet Radio Network (PRN) that will provide
a wideband data communication capability much like the ARPANET but with the
added dimensions of mobility and dynamic configurability. As this concept gains
acceptance in the military services, fundamental choices will need to be made
about mobile PR terminals for use with the system.

This study, begun in June 1978, addresses the terminal characteristics
desirable at the user level through the lower level protocol design decisions, the
kind of interfaces required to support them, and the impact of such issues on
terminal designs and other portions of the system. The work is intended to result
in a demonstration level portable terminal to test and evaluate various solutions to
the issues raised by extreme portability In the packet radio environment.

We feel that a comprehensive scientific study of these issues is important for
the following reasons:

1. To properly exploit, match, and couple terminal design to the
communications attributes and special capabilities of the PRN, such as
broadcast, etc.

2. To determine those user interface characteristics most likely to support a
wide volume of major user needs in a mobile tactical environment.

GENERAL REQUIREMENTS

The study is based upon a display terminal with voice, keyboard, and stylus
or pointing input.

F; c. u oI IEu I% r. p- I k

PACKET RADIO TERMINAL 126

Display

Traditional (and well founded) approaches to permit a terminal user to utilize
data more quickly and effectively use displays with sufficient capacity and
res olution to provide enough surrounding context for better understanding or to
provide a whole scene to enable the viewer to exercise his own analytic powers.
This technique is effective for text, data, and graphics information.

Graphics

It is likely that communication of maps and charts will be desirable on a
portable terminal via the PlNet. In two-way communication of maps or charts, it
would be desirable to be able to communicate marks or even hand-rendered tracks
directly on the map; thus we see a need for a trackable stylus to be used in
conjunction with the display.

Voice

Voice, of course, is a very desirable communication mode to include, since it
Is especially easy to use and is an important medium in a crisis.

Tex t

A full alphanumeric display should be included, since text is the easiest
medium to make the most explicit (again, especially valuable in a tactical
environment).

In summary, we envision a mixed-media tactical terminal including the
following:

Text input and output.
Graphics input and output.
Voice communication.

RELEVANT ISSUES

llere we will briefly discuss various issues relating to eventual terminal
design and their integration into a useful communications environment. j

PACKET RADIO TERMINAL 127

Systems Considerations

Even though this study will concentrate on those issues affecting terminal
designs, we expect it to raise and clarify systems-wide issues that will be valuable
inputs to companion work in the total PRNet program.

The introduction of a highly portable terminal with text, graphics, and voice
capabilities into a communication system such as PRN can be expected to have
consequences at all levels. For example, experience transmitting speech digitally
ovr a packet-switched communication system (the ARPANET) has shown the
undesirability of a communications protocol that enforces acknowledgment and
retransmission on failure at intervening nodes because of the transmission delays
this introduces. In the AIPANET, a new packet type that does not require
acknowledgment was introduced to support speech more effectively and reduce
ijtwork traffic; a similar protocol may be needed for PRN. The specific resolution
of this issue will have to take into consideration many parameters unique to PRN:
realizable bandwidth, higher packet losses, and retransmission due to broadcast
interference. Another issue raised by speech is the maximum packet size, since
reducing, packet size tends to reduce reconstitution delays (with a corresponding
reduction in buffer memory required at repeaters and at the terminal) and reduce
the effect of missing packets.

Another example of the impact of terminal capability on system design is
graphics. Whereas speech is likely to have a primary impact on the terminal, its
packet radio unit, repeaters, and stations, graphics is likely to have an impact on
the host as well. One important issue that needs study is the form In which
graphics information is passed over the network. Here there will be a tradeoff
between transmission bandwidth utilized and processing (and possibly memory)
capacity at the terminal. To minimize cost of additional logic at the terminal it may
be necessary to send graphics data as a complete (or partially encoded) bit map of
the display; this will increase processing and/or storage requirements at the host
and will increase transmission bandwidth. Decisions on graphics data encoding
bear directly on display interface designs, such as optimizing for an efficient scan
access versus random access.

Another design issue is the processing required to compensate for missing
packets and communication outages. While the expectations are for error-free (or

at least error-flagged) individual packets, it can be expected--especially in a hostile
environment--that entire packets will be lost. Protocols for missing packets
within large data transfers must be examined (this can be particularly important
for graphics data, where redundancy is limited). If incomplete data transmissions
can be used, suitable methods must be adopted for identifying and using them.
Perhaps application-directed error protocols are required within the PRN protocols,

PACKET RADIO TEBMINAL 128

which would have implications for the host as well as the terminal. Another
aspect of the same problem Is directly related to the mobility of the user; as he
Iaves the field of reception of one repeater and attempts to communicate with
another, the PRN may not be continuously available or may be busy for some time
setting up new address sequences.

Term inal-System Interaction

The issue is unresolved as to whether terminals must be supported by a host
processor (remote or local), since absolute dependence on such a facility in a tactical
environment might not be desirable. In principle, there is no reason that terminals
cannot directly communicate as an alternative, or at least as a backup mode.
lowever, several problem areas must be explored for appropriate solutions, such as
the following:

1. How does one mobile terminal user obtain the address of another and how
does he identify the terminal or user in his address query?

2 . What processes must be included within a receiving terminal to manage
simultaneous traffic from different sources, and what effects on protocols
does this imply to allow proper treatment of precedence, user alerting, and
temporary suspension of one connection in favor of another? Can the
terminal divide its attention under some circumstances?

In general, the situation of the "called" terminal has not been explored well,
whether the call originates from another terminal or a host. This capability is
virtually nonexistent in data terminal practice today, where it would be possible to

* allow for multiple callers. The telephone company's solution of providing a busy
signal to the second caller and no indication to the callee would probably beunacceptable in crisis conditions.

It will also be desirable to include in the terminal a party line connection
capability or con ferencing mode.

Mixed modality problems have been addressed to some extent in existing
sy.st.nis that permit mixed graphics and text, but these have tended to be in very
bliJhly constrained situations. In the use of multimedia messages, it will become
absolutely necessary to synchronize the various forms so that gross
misinterpretations do not occur. A voice or text reference to a picture must be in
the presence of that picture, not the one before or after. (For example, the messages
"Tlace your battery at the point marked X" and "Fire at the point marked X" had
botter be in the presence of the right maps.)

PACKET RADIO TERMINAL 129

Specifically, protocols and system control structure should be designed not to

burden the user with issues of connectivity and modes of operation. The terminal

d(.sin can significantly affect how much of the net and subnet protocols the user

Til]st see.

Cost Considerations

Convenient, easy-to-use and effective communications are extremely

important to the missions of tactical field personnel. To this end, excellent

terminal portability and functionality are important, but cost may be an equally

important issue in providing information exchange to all. One well known critical

mass problem in communication is that if a communicating community is not well
saat urated with the communication capability, usefulness is reduced significantly.
A military service mniust be capable of properly deploying terminals to optimally

meet mission demands. This study thus explores the tradeoff effects of certain

functional and architectural options on the relative cost of an eventual design.

An example of such a tradeoff is the type of encoding algorithms for either

voice or graphics. The more sophisticated algorithms will require more processing
in the terminal while reducing bandwidth requirements in the PRNet. Predicted

cost-capability tradeoffs will be studied for technologies and techniques expected

to be available. These technologies will, of course, have to be evaluated as part of
total system requirements, including a) the expected terminal mission functional

requirements, b) the communications capabilities, and c) the remote processing

capabilities available to the terminal via the communications system.

For example, the choice between CVSD and LPC voice encoding is not

self-evident.

0 CVSD is now available on a single chip, and produces 8-16 kilobits/sec
data rates.

0 I,PC will probably be available in a few years on an estimated seven chips

of higher complexity, but will produce I - 2 kilobits/sec data rates.

The higher data rates required for CVSD will need approximately eight times

as much buffer memory as the data rates required for LPC to lhandle the same PRNet

delay variability. Further study may indicate that the higher data rates associated
with CVSD for something as synchronous and continuous as voice may be

incompatible with a PBNet loaded with a local crisis. On the other hand, user level

protocols may alleviate traffic Jams on a priority basis by enforcing routine traffic

to more efficient modes of communication.

PACKET RADIO TERMINAL 130

Choice of graphics data protocols will affect terminal memory requirements,
terminal processing, picture painting speed, and communications bandwidth. Since
other functions will undoubtedly be performed on map data bases for other
purposes and devices, we feel that the functions performed for the terminals in
question--such as map section selection, clipping, scaling, adding special overlay
data, and resolution limiting--are the proper province of a processor at the map
source and should be done with device-independent data encoding and data
protocols. However, the final encoding and encapsulation of data to be transmitted
to the terminal will have to be designed with several things in mind, such as ease
of translation, communication efficiency, adequacy of expression, and--most
important--terminal processing and display capabilities. Terminal design
specifications should be carefully chosen not to run counter to the considerations
mentioned above and thus force uncomfortable compromises.

At this time it appears that the driving system design problem is how to
balance the requirements for a small, lightweight, portable terminal against the
extensive services that the terminal is to provide and still offer these services at a
low per-terminal system cost. Total systems costs are recognized to be very
srnsitive to terminal costs (and its immediate connection costs), since terminals
will be by far the most numerous component in the system. Each feature (such as a
graphics display, positional input, or voice) imposes additional requirements for
processing capacity, memory, and special interfacing.

STATUS

Funding for this program commenced in June 1978. Since that date we have
begun to identify technological areas that will need early exploration to resolve
their impact on portable terminal designs.

Because one of the goals is to produce a demonstration level portable terminal
for test and evaluation purposes, the project has begun to investigate technologies
that would have significant impact on size and power requirements but still satisfy
the early conception of the general functional requirements..

I)gital Support Technology

CMOS digital technology, readily available, has low enough power
requirements to satisfy the digital circuitry requirements in a portable terminal.
Packaging density requirements can be met by utilizing the hybrid circuit
substrate chip mounting techniques available from several specialists in this field.
Higher density chips are expected to be available for future production terminals.

PACKET RADIO TERMINAL 131

Dikplay Technology

Considering present technology, an adequate display is the most critical
functional capability. We feel that the display choices available at the time of
terminal design will make a very large impact on the functional and applications
roles for which the terminal design would be oriented. Further, capabilities in the
display area will have a major effect on the way this project pictures the issues
associated with terminals in a tactical environment.

Therefore, the project's initial thrust has been to define the desirable
characteristics of a display and to identify and push appropriate technologies
towards those characteristics. We postulate that for size purposes we would look
for a flat panel technology.

It is likely that much of the traffic that a field unit must support would be
between a base unit and the field unit. It is also reasonable to assume that much of
that traffic would be in the form of text messages, including tables and forms for
which compatible display formats between the base and field units would be

desirable.

Since power and size restrictions would be relaxed somewhat for base units,
they might well be similar in characteristics to the present popular 80 character
line by 24 line capability that the standard T.V. format easily accommodates.

The minimum readily readable matrix to accommodate the above format
would be based upon 5x7 dot characters in 6x10 blocks, producing a requirement
for a total display of 480 pixels wide by Z40 high.

Mockups of this layout were produced at several different sizes to
subjectively select a minimum total display area (for portability) which is still
readily readable by well sighted people. (We assume field personnel would have
reasonable eyesight.) Subjectively, a reasonable print size Is produced at about 100
pixels per inch resulting in a total display area of 4.8 inches wide by 2.4 inches
high. Figures 1 and 2 illustrate approximately how such a display would look
with text and an example of graphics. The graphics resolution appears to be
satisfactory for simplified map sections. Further study Is in order to determine
how well this resolution will support other graphics examples.

Several display technologies were investigated to determine whether there
are reasonable upcoming capabilities to support this application. Initially
concentrating on just the power consumption issue, we can reject many of the
technologies having power needs from one to three orders of magnitude higher
than desirable. These were: light emitting diode arrays, gas discharge panels,

PACKET RADIO TERMINAL 132

"~~ I .. . Dr ,

- - L , -, I Z .

F tF ru22 r - *4, [-- , . .- r

Figure 11.1 One-to-one reproduction of proposed pixel resolution: text example.

041577 21462
I . 5 US CORPS

AX) XX
TA

X) .-- XXMAI..
XX 4

AO Ed x ARM)IoX, ,:,... F

IID
Total 3ctiitq as indicated
CR- report enr activityi in Zone 5.

Figure 11.2 One-to-one reproduction of proposed pixel resolution: graphics example.

PACKET RADIO TERMINAL 133

cathodoluminescence, electrochromics, and electroluminescence. Though the latter
two may hold some promise when developed fu'-ther, they are not expected to
really achieve the ultra low power desired. Survivors of this contest seem to be
liquid crystal and electrophorectics. Though much less mature in development, the
electrophoretic (EP) materials promise to provide the best combination of ultra low
power requirements and excellent viewing characteristics. The viewing angle of
EP approaches that of print on paper, in contrast to the very restricted viewing
angles associated with liquid crystal displays. We feel that this is an important
aspect in the use of a moderately large area display (as compared to a wrist watch or
calculator). Very high contrast ratios ()40:1) have been achieved with EP which
further enhance its viewing characteristics.

The major unresolved issues with respect to the EP approach are as follows:

1. A fine grain array (100 points per inch) has never been tried in EP. Can
techniques be developed that will prevent particle migration at this
display dot size?

Z. The EP medium does not possess a significant inherent threshold;
therefore matrix point selection techniques must be developed.

Two subcontracts have been let to laboratories with expertise in the two respective
technical areas.

Xerox PAIRC, Palo Alto, California, has worked independently for several
years on the chemical and physical properties of electrophoretic materials. They!
have been contracted under this project to ferret out the problem areas and refine

techniques for handling problems peculiar to this application. Their highest
priority task is to investigate and refine solutions to the particle migration
problem.

Panel Displays. Incorporated, has been subcontracted to fabricate arrays of
thin film transistors to address and drive the EP materials.

Ioth of these technical efforts are too young to report progress, other than

that the efforts have been launched and work is in progress.

GFNERAL ISSUES

The project is now fully staffed for Its first phase of work and work is in
progress to.explore, clarify, and consolidate the many issues which will impact the
drf,i',n, cost, and functionality of the portable terminals for a mobile PPlNet
environment.

PACKET RADIO TERMINAL 134

In this study we examine a number of system design dimensions expected to

have a significant impact on the tradeoffs among cost, portability, and

performance. A number of dimensions have already been identified; as the study

progresses we expect additional ones to emerge. Terminal system issues currently

identified are as follows: the user interaction mechanism (text, graphics, voice);

the partitioning of user-support processing (at the terminal, in an associated "smart

box," or at the host); the connectivity of the terminal nodes (single connection of a

terminal with a host or another terminal, or multiple connection of terminal or

host with a set of terminals); priority interrupts to a terminal and resolution of

multiple traffic sources (sometimes beneficial or complementary, sometimes

disruptive or confusing). The interactions among design parameters will be

evaluated in terms of their impact on such system properties as the amount of local

and central processing capability needed; the requirements for interfacing the

keyboard, display, graphics, and voice components to the terminal; conventions and

protocols for communication and data; and required bandwidth. Other system

drsign issues involve reliability (fail-safe/soft features, aids to remote

maintenance, self-test and reporting features), security (authentication, key

distribution, key loading, encryption), current and developing technologies

(low-power logic, component packaging and partitioning, environmental

considerations), and human factors aspects (for both the terminal equipment and

the system).

135

12. USER-DEDICATED RESOURCE

Project Staff: Chloe HoIg

BACKGROUND

The ARPA/IITO research community's continuous expansion of the frontiers
of information processing technology is reflected in a constant expansion and
modification of information tools available on the ARPANET. These tools tend to
have inadequate documentation (not a researcher's primary concern); moreover,
because of their large numbers and many subsequent modifications, it is difficult
even to keep track of them all.

AIIPA has been introducing new users to the network at an increasing rate for
several reasons. First, the network is a superb communications medium. Second,
ARPA must transfer the results of its research programs to other agencies, and does
so partly by educating selected users in the use of new information processing tools
via the ARPANET.

TIlE PROBLEM

Before this project was established in 1977, the full benefits of network
usage were not being fully realized for either ARPA or the military services. Users
faced an initial barrier, partly because many were new to on-line computer
systems in general, partly because system modification was so rapid, and certainly
because up-to-date introductory documentation was lacking. (It is hard to consider
objectively the merits of a new technology when one has difficulty getting
through a TIP and logging in to an ARPANET Host.) The documentation that did
exist, prepared by researchers or programmers for their own use, slighted the needs
of nonprogrammer users.

THE SOLUTION

The best solution was therefore to make a single individual responsible for
helping new users overcome that initial barrier by keeping track of relevant
developments and communicating clearly (i.e., with minimal computer jargon).
This user resource was introduced to the ARPANET community in 1977.

;i 4

USER-DEDICATED RESOURCE 136

Although new users eventually become experienced users, there is no end to
the problem: newer users are constantly introduced because of changes in the IPTO
program audience and the normal turnover in military personnel. These new users
are contacted as soon as their accounts are installed on the ISI machines; they are
interfaced to the available network facilities by means of three levels of
appropriate documentation.

Both short-term solutions (answering questions, solving individual problems)
and long-term solutions (guiding users in solving common problems, making
available better procedures and documentation) are routinely provided. User
problems are analyzed as they occur and appropriate action decided upon. Useful
inputs are also provided to system programmers to better meet the users' needs.

With ongoing- efforts among the system support groups to effect
standardization of resources available in TENEX and TOPS-20 across the ARPANET
machines, this task has been and is yet providing broad support to users across the
entire network. Military organizations provided with assistance during the
lifetime of this project include the Advanced Command and Control Architecture
Testbed groups; the Systems Development Laboratory and the Naval Ocean Systems
Center; the Naval Research Laboratory; and Rome Air Development Center.

DIRECT USER ASSISTANCE

In this reporting period the concept of assistance to users was expanded to
Include direct on-site tutorial assistance to military users at the military bases
themselves. Trips were made to the U. S. Army Signal School at Fort Gordon,
Georgia, CACDA at Fort Leavenworth, Kansas, and TRADOC/PCAR at Fort Bragg,
North Carolina, to provide on-site instruction to personnel in the use of the
ARPANET in connection with the Army Data Distribution System (ADDS) program.

In June 1978 th. BAA IIl Conference was held at Fort Gordon. A great deal of
effort was spent in developing a training strategy and introductory instructional
material for Signal School personnel who had been designated as participants in the
ARPA/IPTO element of the conference.

DOCUMENTATION

This project has filled a long-standing need for simple, understandable, and
above all new-user-oriented (rather than system-oriented) introductory
documentation. The first major task for this project was to produce The Joy of
TP.NEX [1], a TENEX manual for novice users, since available TENEX manuals

USER-DEDICATED RESOURCE 137

were simply unsuitable for that purpose. Both the rapid distribution of the
manuals and the appearance of new documentation (e.g., The XED Beginning
Ins(tuction Monuial I,)) necessitated a second iteration In April 1976 and a third in
November 1976. Further, it became necessary to focus attention on the rather
Impressive set of new users accessing the ARPANET via the TIP for purposes of
mail-handling, and a more basic, primer-like manual [3] was published in April
1977. The fourth version of More 1oy of TENEX was completed, published, and
distributed in 1977.

An innovative primer (4] explaining SIGMA, the operating system of the
Military Message Experiment at Camp Smith, Oahu (see Section Z), was delivered to
CINCPAC users in December. The SIGMA Primer is the first of a series; a second
issue reflecting changes to the SIGMA system is planned for release in mid- 1979.

As mentioned above, Instructional documentation was prepared for Army
Signal School Participants in the BAA III Conference at Fort Gordon in June 1978. A
three-part set of TOPS-20 operating system documents [5] consisting of an
Information Memorandum, a Training Manual, and a Reference Manual has also
been completed and distributed for review by ADDS personnel. This project is also
making a major contribution to the development of the training techniques and
strategies to be employed during the critical first phase of the ADDS experiment.

FUTURE WORK

Work continues on consolidating the two ISI TENEX manuals and combining
this document with TOPS-ZO material to create a comprehensive two-volume set
for new users 16]. An update of an on-line Network Directory program and
continued development of an on-line TENEX user help system is still in progress.

As time permits, work will proceed on an update of the ISI
ARPANET/TENEX/MSG Primer to include basic instruction on use of the XED text
editor.

USER-DEDICATED RESOURCE 138

REFERENCES

1. Ilolg, Chloe, The Joy of TENEX,;3...the basics and More Joy of TENEX.;4...some
of the refinements, Information Sciences Institute, November 1976.

2. The XED lleginning Instruction Manual, Information Sciences Institute,
ISI/TM-76-3, May 1976.

3. ilolg, Chloe, ARPANET TENEX Primer and MSG Handling Program,
Information Sciences Institute, ISI/TM-77-4, April 1977.

4. Ilolg, Chloe, ARPAINavylCINCPAC Military Message Experiment SIGMA
Ptimer, Information Sciences Institute, ISI/TM-77-9, November 1977.

5. Ilolg, Chloe, ADDS Experiment Information Manual, ADDS Experiment Training
Manual, ADDS Experiment Reference Manual (forthcoming).

6. Ilolg. Chloe, Joy of TENEX and TOPS-20, Volume I, and Joy of TENEX and
TOPS-20, Volume II (forthcoming).

, 1

139

13. ARPANET TENEX SERVICE

Techniral Staff: Support Staff:
Marion McKinley, Jr. Clarence Perkins Larry M. Akana
Wanda N. Canillas Vernon W. Reynolds Carol Carreon
Dale Chase Dale S. Russell Larry Fye
Philip Crowe Marilynne A. Sims Oralio E. Garza
Vernon Dieter Barden E. Smith James Griffin
George Dietrich Dennis Smith Richard E. Kaiser
Dwain Durden William E. Stover Taylor W. Kidd
Glen W. Gauthier Lee P. Taylor Archer J. Lewis
Kyoo C. Jo Phyllis N. Taylor Robert Logsdon Jr.
James T. Koda Leo Yamanaka Keith D. Miles
Kyle 1P. Lemons Steven R. Pollak
James M. Lieb Randolph A. Reidel
Donald R. Lovelace Conhulting Staff: Robert W. Robbins
Raymond L. Mason David B. Fralick Ronald L. Ross
John P. Metzger Gary Seaton
William II. Moore Ronald D. Shestokes
Edward D. Mortenson Scot T. Smith
Robert Parker Michael E. Vilain

Patrick Wieber
Deborah C. Williams

INTRODUCTION

The ISI ARPANET TENEX service project presently consists of two computer

centers: a local and a remote installation. The former is operated as a nonclassified
developmental and service center in support of a broad set of ARPA requirements,
ARPA projects, AHPA contractors, and military users. It currently services more
than 2000 directories, some of which are multiplexed by several users.
Approximately 96 percent of the users access the facilities via the ARPANET from
locations extending from Europe to Hawaii. The latter is operated in a classified
environment as part of the Advanced Command and Control Architecture Testbed
(ACCAT) at the Naval Ocean Systems Center (NOSC), San Diego, California. It
currently services ARPA and Navy contractors involved in the joint ARPA and U.S.
Navy Command and Control experiment. The classified computer center is
presently acccessible only by those personnel physically located within the
classified facility. Future plans will allow remote users access via a secure
ARPANET communication technique. On October 1, 1978, ISI assumed

ARPANET TENEX SERVICE 140

responsibility for a second remote installation. This center is also operated in a
classified environment as part of the Military Message Experiment (MME) at
CINCPAC Headquarters, Camp Smith, Oahu, Hawaii.

The local computer center consists of four large-scale Digital Equipment
Corporation (DEC) central processors (one KI-10, one KL-1090T and two KA-10s),
Bolt Beranek and Newman (BBN) virtual memory paging boxes, large-capacity
memories, on-line swapping and file storage, and associated peripherals (see
Fil,. 13.1). All of the above-mentioned systems presently run under control of the
TENEX (originally developed by BBN) or the DEC TOPS-20 operating system, which
supports a wide variety of simultaneous interactive users. In addition, the local
facility supports other processors, such as several DEC PDP-11/40's, one DEC
PDP- 11/45, and associated peripheral devices.

The NOSC remote center consists of three large-scale DEC central processors
(one KL204OT, one KA-O0, and one PDP- 11/70), virtual memory paging box, large
capacity memories, on-line swapping and file storage and associated peripherals
(see Fig.. 13.2). The KA-10 runs under the TENEX operating system, the KL-2040T
under the DEC TOPS-20 operating systems, and the PDP- 11/70 under Western
Electric Laboratories' UNIX operating system.

The MME remote center consists of one large-scale DEC KL- 1 OB central
processor, large capacity memories, on-line swapping and file storage, and
associated peripherals (see Fig. 13.3). This system runs under a specially modified
version of the TENEX operating system.

IlARDWARE

New hardware acquired during the past year for the local computer center
includes an additional 256K of core memory from Ampex. This memory has been
added to ISIA, thereby increasing the memory capacity of this system to 512K.
Three additional HP06 disk drives and one additional RH-20 channel interface were
purchased from DEC and installed on the ISlE system to provide additional file
storage and swapping speed to keep up with the ever-increasing demands by the
users of this system. A distant Host interface has been installed in IMP 52. This
interface, in conjunction with a BBN Host Interface and a Collins BCR which has
been installed on ISIA, will allow ISI to participate in providing service to those
users who will be using this system to encrypt/decrypt data according to the
recently developed NBS encryption/decryption algorithm.

Also included within the ISI local computer center are two BBN H-516
Interface Message Processors (IMP), one DEC PDP- 11/40 and Xerox Graphics Printer

ARPANET TENEX SERVICE 141

I~~m jmi
L. I~1 o-1

UUr

4 04

ria

- 04

2-2-

Ln S

ARPANET TENEX SERVICE 142

00

1.2.

'ca)
050

ii -i

ARPANET TENEX SERVICE 143

-a

oze- -
-

i... ° '° - I " " a l- " ' ° ° o -o ,. -f ' [<

'-44

I -

"-
- U

0J

ARPANET TENEX SERVICE 144

(XGP), one DEC PDP- 11/45 with an SPS Signal Processing System, and a Floating
Point Systems AP-120B (FPS) (configured as a speech processor), one
Microprogrammable Processor (MLP-900) and several associated peripheral devices
such as disk, memories, terminals, etc. from various manufacturers and several
special interfaces designed and developed by ISI.

Systems ISIA and ISIC are currently designated as priority systems and are
therefore cross-connected (cabled) in such a manner so that if one system crashes
or is otherwise unavailable because of hardware/software maintenance or
development, the system may be started as a back-up replacement system and
service continued after a brief (15 minutes or less) delay to switch the file storage
media and one cable.

New hardware acquired during the past year for the NOSC remote computer
center includes 256K of Ampex core memory, which was added to the
NOSC-KA-TENEX system, thereby increasing the memory capacity of this system to
512K. A Calcomp CD230 dual disk drive unit has been added to this system to
provide increased on-line file storage and swapping. A data line scanner designed
and developed by IS! has also been added to expand the number of directly
connected users of this system to twenty-four. One additional RP04 disk drive
purchased from DEC has been installed on the NOSC-PDP- 11/70 Unix system to
provide either backup or additional file storage for this system. One eight-line
communications group was installed on the NOSC-KL-2040-TOPS-20 system.
Attached to this line group is a specially designed TDM multiplexor utilizing
fiber-optic lines for communication to other areas within the NOSC complex, so
that remotely located users (within the NOSC complex) may use the ACCAT
computer facility.

BJecently, IS was tasked by ARPA/IPTO to develop a cost-effective system that
would increase throughput and response of the SIGMA (MME) message system. The
acquisition of necessary equipment has already begun. ISI has been successful in
negotiating a trade with Digital Equipment Corporation, exchanging many of the
items (i.e., CPU, memory, etc.) in the existing MME system at CINCPAC
Heiadquarters for credit toward the purchase of a newer state-of-the-art processor.
This equipment will be augmented by additional equipment purchased from other
vendors as well as many items from the existing MME system. This will result in
one large-scale integrated system that will meet the aforementioned requirements.
A minimally configured system is presently installed within the ISI local computer
center for development of the special TENEX operating system. New hardware,
either traded for or purchased, includes the following: one DEC KL-10B CPU, one
DEC 1R1I-20 channel interface with one DEC RP06 disk drive, two DEC MH-10
memories (256K each) and one Calcomp 1030A disk controller with one Calcomp

CD-230 (two-spindles) disk drive. Refer to Figure 13.3 for final configuration of

ARPANET TENEX SERVICE 145

this system. This system is presently scheduled for installation on or about October
6, 1978. and is expected to be operational soon thereafter.

Purchase orders have been issued to DEC for a new 2060T, TOPS-ZO AN
system. This system is scheduled for delivery in November 1978. It will be
de.igjnated as ISID and will provide computer service to NLS users at the Air Force
Data Systems Design Center (AFDSDC), Gunter Air Force Station, Montgomery,
Alabama. This system will also provide computerized message and editing
capabilities to users from the ARPA-sponsored Army Data Distributions System
(ADDS) project at Fort Bragg, North Carolina.

SOFTWARE

During the year, the prime concern of the software group has been providing
stable software at a consistent level across all ISI TENEX and TOPS-20 systems.
This includes the monitor, subsystem and utility programs. Work was also done
with various diagnostic programs to add new features and improve existing
functions.

The TENEX monitor used on all ISI TENEX systems is version 134 from BBN,
with additions of a few utility JSYS's for local support, and minor bug fixes. Many
of the bug fixes were obscure anomalies in file and process support JSYS's, which
came to light during the development of the SIGMA MME system. Improvements in
monitor overhead were made in the area of terminal data transfer. Data transfer
rates were greatly Improved by taking advantage of the direct memory access
feature in the DN87 terminal hardware.

The TOPS-20 monitor used on all ISI TOPS-20 systems is version 101B from
DEC, with local support additions and a few minor bug fixes. An important
increase in disk storage was allowed by a slight change to the internal address
formats. System security was greatly improved by incorporating the password
encryption present in TENEX into the TOPS-20 operating system. This algorithm
transforms an alphanumeric string of up to 39 characters into a 72-bit binary
pattern.

Early this year, 151 assumed responsibility for the support and maintenance of
the NLS subsystem, version 8.5. Our level of support includes assistance to ARPA
and AFDSDC personnel in using the features of NLS 8.5, minor bug fixes and
extensions of existing functions, but excludes any significant design changes.

Subsystem maintenance is a continuous effort. The File Update Support
System (FUSS), which was developed last year, has proved to be a very effective

i-

ARPANET TENEX SERVICE 146

tool for providing consistent levels of software across several machines. Additional
work brought about several important enhancements. There is now an interactive
interface for collecting update information, which helps eliminate typing mistakes
and forgotten update criteria. Security features were developed to help validate
update messages and prevent bogus entries from causing problems.

Work on diagnostic programs was undertaken to add new features and
improve existing functions. Many of the efforts were directed towards the
diagnostic for the Systems Concepts SAIO (DEC to IBM translator), and the
peripheral devices cabled to it. Extensive portions were rewritten to improve
interactions with the hardware service engineer. This included better input
capabilities, informative error messages, and extended testing facilities. The
rewrite also brought improved organization and modularity to the coding,
improving comprehension of the various tests.

Work has commenced on two major projects. TENEX has been modified to
run on a DEC 1090-VA (KL-10), which has supported the MME Project at CINCPAC
Headquarters since early in the fourth quarter of 1978. The KL-10 is run in
"KI-10 mode," so that KL-TENEX closely resembles KI-TENEX with necessary
changes required to support hardware improvements and additions, including the
paging hardware, clocks and timing, and a cache memory. Peripheral diagnostics
w ere also changed to run on the KL- 10.

The DEC TOPS-20 operating system is being upgraded to version 3A, and is
expected to be released from DEC in mid-1979. Prior to installation on our TOPS-2O
systems, there are several local changes which must be incorporated into the basic
release. Many are bug fixes which will hopefully already be present. Others are
important local changes, especially in scheduling and page management. A sizeable
effort will be required in the area of subsystem modification. In this release, DEC
modified specifications to several existing JSYS's (monitor calls), and this will
require extensive checking and possible modification of several subsystems and
user programs to insure the new specifications are observed.

SUPPORT PERSONNEL

IST provides seven-day-a-week, twenty-four-hour-a-day operator, software,
and hardware support for the local computer center. At least one operator is
physically on-site at all times, and the systems programmers and computer service
engineers either are physically on-site or are scheduled for one-hour on-call
service. The IS! remote NOSC computer center is currently manned as a
fi ve-day-a-week, eight-hour-a-day type of operation and all support personnel are
physically on-site only during these times. The ISI remote MME computer center

A

ARPANET TENEX SERVICE 147

will be manned on a twenty-four-hour-a-day, seven-day-a-week basis. At least
one operator will be physically on-site at all times, and the systems programmers
and computer service engineers will be physically on-site or on a one-hour on-call
schedule.

R ELIABIITY

To provide required hardware/software preventive and/or corrective

maintenance of the equipment, ISI will continue scheduling each of the
TENEX/TOPS-20 systems as "out of service" (unavailable to users) for seven
contiguous hours each week. The remaining 161 hours of each week are intended
to be devoted entirely (100 percent) to user service. The actual long-term up-time
for the network service machines has exceeded 98 percent of scheduled up-time
for the last year.

LOCAL PROJECT SUPPORT

The local service center has been used extensively in support of local projects.
The ISI staff makes use of the available standard subsystems and some staff
members have written subsystems and utilities to support their own projects. The
facility also supports less frequently used subsystems at the special request of users
(e.g., PUP- II cross-assemblers and the DECUS Scientific Subroutine Package).

I

149

ISI PUBLICATIONS

Research Reports

Abbott, Russell J., A Command Language Processor for Flexible Interface Design,
ISIIRR-74-24, February 1975.

Anderson, Robert H., Programmable Automation: The Future of Computers in
Manufacturing. ISI/RR-73-2, March 1973; also appeared in Datamation, Vol. 18,
No. 12, December 1972, pp. 46-52.

and Nake M. Kamrany, Advanced Computer-Based Manufacturing Systems for
Defense Needs, ISI/RR-73-1O, September 1973.

Balzer, Robert M., Automatic Programming, ISI/RR-73-1 (draft only).

--- , Human Use of World Knowledge, ISI/R-73-7, March 1974.

- Imprecise Program Specification, ISI/RR-75-36, May 1976; also appeared in
Calcolo, Vol. XII, Supplement 1, 1975.

--- , Language-Independent Programmer's Interface, ISI/RR-73-15, March 1974;
also appeared In AFIPS Conference Proceedings, Vol. 43, AFIPS Press, Montvale,
N.J., 1974.

Norton R. Greenfeld, Martin J. Kay, William C. Mann, Walter R. Ryder,
David Wilczynski, and Albert L. Zobrist, Domain-independent Automatic
Programming, ISI/RR-73-14, March 1974; also appeared in Proceedings of the
International Federation of Information Processing Congress, 1974.

--- , Neil M. Goldman, and David Wile, Informality in Program Specifications,
ISI/RR-77-59, April 1977.

Neil Goldman, and David Wile, Meta-Evaluation as a Tool for Program
Understanding, ISI/RR-78-69, January 1978.

Neil Goldman, and David Wile, On the Use of Programming Knowledge,
ISI/R-77-63, October 1977.

Bisbey, Richard L., Jim Carlstedt, Dale M. Chase, and Dennis Hollingworth,
Data Dependency Analysis, ISIIRR-76-45, February 1976.

r. V3 . *1(.

PUBLICATIONS 150

and Gerald J. Popek, Encapsulation: An Approach to Operating System
Security, lSI/RR-73-17, December 1973.

Britt, Benjamin, Alvin Cooperband, Louis Gallenson, and Joel Goldberg, PRIM
System: Overview, ISI/RR-77-58, March 1977.

Carlisle, James H., A Tutorial for Use of the TENEX Electronic
Notebook-Conference (TEN-C) System on the ARPANET, ISI/RR-75-38,
September 1975.

Carlstedt, Jim, Richard L. Bisbey II, and Gerald J. Popek, Pattern-Directed
Protection Evaluation, ISI/RR-75-31, June 1975.

Cohen. Dan, Specification for the Network Voice Protocol, ISI/RR-75-39, March
1976.

Crocker, Stephen D., State Deltas: A Formalism for Representing Segments of
Computation, ISI/RR-77-6 1, September 1977.

Ellis, Thomas 0., Louis Gallenson, John F. Heafner, and John T. Melvin, A Plan
for Consolidation and Automation of Military Telecommunications on Oahu,
ISI/RJ-73-12, June 1973.

Gallenson, Louis, An Approach to Providing a User Interface for Military
Computer-Aided Instruction in 1980, ISI/RR-75-43, December 1975.

Gerhart, Susan L., Program Verification in the 1980s: Problems, Perspectives, and
Opportunities, ISI/RR-78-7 1, August 1978.

Goldman, Neil, Robert M. Balzer, and David Wile, The Inference of Domain
Structure from Informal Process Descriptions, ISI/RR-77-64, October 1977.

Good. Donald I., Ralph L. London, and W. W. Bledsoe, An Interactive Program
Verification System, ISI/RR-74-22, November 1974; also appeared in IEEE
Transactions on Software Engineering, Vol. SE-1, No. 1, March 1975, pp. 59-67.

Guttag, John V., Ellis Horowitz, and David R. Musser, The Design of Data Type
Specifications, ISI/RR-76-49, November 1976.

Guttag. John V., James H. Horning, Ralph L. London, A Proof Rule for Euclid
Procedures, ISI/RR-77-60, May 1977; also in Neuhold, E. J., (ed.) Formal
Description of Programming Concept$, North-Holland Publishing Co., 1978,
pp.211-220.

PUBLICATIONS 151

Hleafner, John F., A Methodology for Selecting and Refining Man-Computer
Languages to Improve Users' Performance, ISI/RR-74-2 1, September 1974.

--- , Protocol Analysis of Man-Computer Languages: Design and Preliminary
Findings, ISI/RR-76-34, July 1975.

Igarashi, Shigeru, Ralph L. London, and David C. Luckham, Automatic Program
Vcrification i: A Logical Basis and Its Implementation, ISI/RR-73- 11, May 1973;
also appeared in Artificial Intelligence Memo 200, Stanford University, May
1973 and Acta Informatica, Vol. 4, No. 2, 1975, pp. 145-182.

Kamrany, Nake M., A Preliminary Analysis of the Economic Impact of
Programmable Automation Upon Discrete Manufacturing Products, ISI/RR-73-4,
October 1973.

Klinbleton, Stephen R., A Heuristic Approach to Computer Systems Performance
Improvement. I: A Fast Performance Prediction Tool, ISI/RR-74-20, March 1975.

Levin, James A., and James A. Moore, Dialogue Games: Meta-Communication
Structures for Natural Language Interaction, ISI/RR-77-53, January 1977.

--- , and Neil M. Goldman, Process Models of Reference in Context, ISI/R-78-72,
October 1978.

--- , James A., and Armar A. Archbold, Working Papers in Dialogue Modeling,
Volume 1, ISI/RR-77-55, January 1977.

London, Ralph L., Mary Shaw, and William A. Wulf, Abstraction and Verification
in ALPHARD. A Symbol Table Example, ISI/RR-76-51, December 1976.

Lynn, Donald S., Interactive Compiler Proving Using Hoare Proof Rules,
ISI/RR-78-70, January 1978.

Mann, William C., Dialogue-Based Research in Man-Machine Communication,
ISI/RR-75-4 1, November 1975.

--- , Man-Machine Communication Research Final Report, ISI/tR-77-57, February
1977.

--- , Why Things Are So Bad for the Computer Naive User, ISI/RR-75-32, March
1975.

--- , James A. Moore, James A. Levin, and James H. Carlisle, Observation Methods
for Human Dialogue, ISI/RR-75-33, July 1975.

' I_ _

PUBLICATIONS 152

--- , James 11. Carlisle, James A. Moore, and James A. Levin, An Assessment of
Reliability of Dialogue Annotation Instructions, ISI/RR-77-54, January 1977.

--- , Greg Scragg, and Armar A. Archbold, Working Papers in Dialogue Modeling,
Volume I!, ISI/IIR-77-56, January 1977.

Martin, Thomas H., Monty C. Stanford, F. Roy Carlson, and William C. Mann,
A Policy Assessment of Priorities and Functional Needs for the Military
Computer-Aided Instruction Terminal, ISI/RR-75-44, December 1975.

Miller, Lawrence H., An Investigation of the Effects of Out jut Variability and
Output Bandwidth on User Performance in an Interactive Computer System,
ISI/RR-76-50, December 1976.

Moore, James A., James A. Levin, and William C. Mann, A Goal-Oriented Model
of Natural Language Interaction, ISI/RR-77-52, January 1977.

Moriconi, Mark S., A System for Incrementally Designing and Verifying Programs,
Volume I, ISI/RR-77-65, January 1978.

--- , A System for Incrementally Designing and Verifying Programs, Appendix,

Volume I, ISI/RR-77-66, January 1978.

Musser, David R., A Proof Rule for Functions, ISI/RR-77-62, October 1977.

Oestreicher, Donald R., A Microprogramming Language for the MLP-900,
ISI/RR-73-8, June 1973; also appeared in the Proceedings of the ACM Sigplan
Sigmicro Interface Meeting, New York, May 30-June 1, 1973.

Richardson, Leroy, PRIM Overview, ISI/RR-74-19, February 1974.

Rothenberg. Jeff, An Editor to Support Military Message Processing Personnel,
ISI/RR-74-27, June 1975.

--- , An Intelligent Tutor: On-Line Documentation and Help for A Military Message
Service, ISI/RR-74-26, May 1975.

Shaw, Mary, William A. Wulf, and Ralph L. London, Abstraction and Verification
in ALPHARD: Iteration and Generators, ISI/RR-76-47, August 1976.

Tugender, Ronald, and Donald R. Oestreicher, Basic Functional Capabilities for a
Military Message Processing Service, ISI/RR-74-23, May 1975.

PUBLICATIONS 153

Wilczynski, David. A Process Elaboration Formalism for Writing and Analyzing
Programs, ISI/RR-75-35, October 1975.

Wulf. William A.. Ralph L. London, and Mary Shaw, Abstraction and Verification

in ALPHARD: Introduction to Language and Methodology, ISI/RR-76-46, July

1976; also appeared in IEEE Transactions on Software Engineering, Vol. SE-Z,

No. 4, December 1976, pp. 253-265.

Yonke, Martin D., A Knowledgeable, Language-Independent System for Program
Construction and Modification, ISI/RR-76-42, December 1975.

Special Reports

Annual Technical Report, May 1972 - May 1973, ISI/SR-73-1, September 1973.

A Research Program in the Field of Computer Technology, Annual Technical Report,

May 1973 - May 1974, ISI/SR-74-2, July 1974.

A Research Program in Computer Technology, Annual Technical Report, May 1974 -
June 1973, JSI/SR-75-3, September 1975.

Bisbey. Richard L., Gerald Popek, and Jim Carlstedt, Protection Errors in

Operating Systems: Inconsistency of a Single Data Value Over Time, ISI/SR-75-4,
January 1976.

Carlstedt, Jim, Protection Errors in Operating Systems: Validation of Critical
Variables, ISI/SR-75-5, May 1976.

A Research Program in Computer Technology, Annual Technical Report, July 1975 -
June 1976, ISI/SR-76-6, July 1976.

Hollingworth, Dennis, and Richard L. Bisbey II, Protection Errors in Operating
Systems: Allocation/Deallocation Residuals, ISI/SR-76-7, June 1976.

1977 Annual Technical Report: A Research Program in Computer Technology, July
1976-June 1977, ISI/SR-77-8, November 1977.

Carlstedt. Jim, Protection Errors in Operating Systems: Serialization, ISI/SR-77-9,

April 1978.

Carlstedt, Jim, Protection Errors in Operating Systems: A Selected Annotated
Bibliography and Index to Terminology, ISI/SR-78-10, January 1978.

PUBLICATIONS 154

llayden, Charles, Peter W. Alfvln, and Stephen D. Crocker, Multi-Microprocessor
Emulation: Annual Report for 1977, ISI/SR-78-12, April 1978.

Bisbey, Richard, and Dennis Hollingworth, Protection Analysis: Final Report,
ISI/SR-78-13. July 1978.

Technical Manuals

Gallenson, Louis, Joel Goldberg, Ray Mason, Donald Oestreicher, and Leroy
Richardson, PRIM User's Manual, ISI/TM-75-1, May 1975.

XED User's Manual: Beginning Instruction, ISI/TM-76-3, May 1976.

liolg'. Chloe, ARPANETITENEX Primer and MSG Handling Program,
ISI/TM-77-4. April 1977.

Gallenson, Louis, Alvin Cooperband, and Joel Goldberg, PRIM System:
ANIUYK-20 User GuidelUser Reference Manual, ISI/TM-77-5, October 1977.

PRIM System: UOO User GuidelUser Reference Manual, ISI/TM-77-6;
October 1977.

PRIM System: Tool Builder's Manual/User Reference Manual, ISI/TM-78-7,
January 1978.

liolg. Chloe, ARPA Navy CINCPAC Military Message Experiment SIGMA Primer,
JSI/TM-77-9. December 1977.

Oestreicher, Donald B., Paul Raveling, and Robert H. Stotz, HPIMME TerminalApplication Specification, ISI/TM-78-10, March 1978.

Rothenberg. Jeff, DARPA Navy CINCPAC Military Message Experiment: SIGMA
Message Service Reference Manual, ISI/TM-78-1 1, March 1978. -

I,

#,

